Поняття простої економетричної моделі
Тема 3. Методи побудови загальної лінійної моделі.
Лекція 3
1. Поняття простої економетричної моделі
2. Графічна інтерпретація простої економетричної моделі
3. Виробничі функції
Рекомендована література:
1. І.Г.Лукьяненко, Л.І.Краснікова. Економетрика.,К., 1998, 345с.
2. К.Доугерти. Введение в эконометрию, М., 1997, 396с.
3. Й. Грубер. Эконометрия.,т.1.,К., 1997, 422 с.
4. Толбатов Ю.А., Економетрика, - К., "Четверта хвиля'', 1997, 319с;
5. Наконечний С.І.. Терещенко Т.О., Романюк Т.П., Економетрія, -К., КНЕУ, 2005
6. Лук'яненко І.Г., Краснікова Л.І., Економетрика: Практикум з використанням комп'ютера.-К., "Знання", 1998.
Розглянемо економетричну модель з двома змінними в загальному вигляді:
Y=f(X) + u, (2.9)
![]() |
![]() |
де Y— залежна змінна; X— пояснювальна змінна; и — випадкова складова.
Це означає, що ми ідентифікували змінну X, яка впливає на змінну Y. Назвемо таку економетричну модель простою моделлю.
На базі простої економетричної моделі розглянемо принципову структуру економетричної моделі та основні методи оцінювання її параметрів. Теоретичні знання про взаємозв'язок між економічними показниками мають підказати його конкретну аналітичну форму. Але оскільки одні й ті самі економічні процеси можуть бути описані різними функціями, то потрібно звернутися до статистичного аналізу і за його допомогою зробити вибір серед можливих альтернативних варіантів.
Найпростішою є лінійна форма зв'язку між двома змінними:
де а0 і а1 — невідомі параметри.
Можливі й інші форми залежностей між двома змінними, наприклад:
Останнє з цих співвідношень є лінійним відносно, а перші два можна звести до лінійної форми, якщо прологарифмувати вирази в обох частинах кожного з рівнянь:
Навіть побіжне знайомство з економічними показниками, взаємозв'язок між якими вимірюється, показує, що окремі експериментальні значення залежної змінної не можуть міститися строго на прямій лінії, за якою вимірюється зв'язок. Певна частина фактичних спостережень залежної змінної лежатиме вище або нижче від значень, обчислених згідно з вибраною функцією. Якщо фактичні значення залежної змінної містяться на значній відстані від обчислених за допомогою функції, то можна припустити, що формалізація залежності між економічними показниками не адекватна реальному процесу взаємозв'язків у економіці. Проте поняття «значна відстань» не є конкретним, а тому не може бути критерієм для оцінювання адекватності моделі.
Щоб розв'язати задачу наближення розрахованих значень змінної до фактичних, розглянемо стохастичну (випадкову) складову, яка акумулює всі відхилення фактичних спостережень змінної Y від обчислених за моделлю.
Математичний аналіз цієї складової дасть змогу зробити висновок щодо того, чи можна вважати її стохастичною і чи містить вона систематичну частину відхилень, що може зумовлюватися наявністю тих чи інших помилок у моделюванні.
Нехай вектор змінної Y описує витрати на споживання, а вектор X— дохід сім'ї. Очевидно, що для окремих груп сімей існує певна залежність між споживчими витратами і доходом сім'ї. Проте, як уже зазначалося, на розмір споживчих витрат крім доходу можуть впливати інші фактори, частина яких є випадковими. Ці фактори й зумовлюють відхилення фактичних витрат на споживання від обчислених, наприклад, на основі регресійної функції:
де ,
, — оцінки параметрів моделі.
Наблизити обчислені значення до фактичних формальноможна введенням до моделі стохастичної складової:
у = а0+а1х+е
де ао,а1, —параметри моделі.
Розглянемо приклад простої економетричної моделі на прикладі моделі споживання.