Тема 20 Роль теоретической и прикладной биофизики в системе биологических наук

Цель:

-ознакомить с предметом, методами и задачами биофизики

План
1 Определение биофизики как науки
2 Развитие и становление биофизики как науки
3 Основные разделы биофизики
4 Задачи биофизики как фундаментальной и прикладной науки на современном этапе.

 

1 Биофизика как наука начала формироваться ещё в XIX веке. Многие физиологи того периода уже работали над вопросами, которые в настоящее время являются объектами биофизического исследования. Пионером в этой области является выдающийся русский физиолог И.М. Сеченов. Изучая динамику дыхательного процесса с помощью методов физической химии и использую определенный математический аппарат он установил количественные законы растворимости газов в биологических жидкостях. По его предложению такая область исследования стала именоваться молекулярной физиологией. Другой исследователь, известный немецкий физик Гемгольц (H. Hemholz), разрабатывая проблемы термодинамики, предпринимает попытку использования этих законов для пониманию энергетики живых систем.

В формировании биофизики как биологической науки выдающуюся роль сыграли исследования К.А. Тимирязева в области фотосинтеза, которые явились началом становления фотобиофизики. Таким образом, биофизика это наука о наиболее простых и фундаментальных взаимодействиях, лежащих в основе биологических явлений. Теоретическое построение и модели биофизики основаны на физических понятиях энергии, силы, типов взаимодействия, на общих понятиях физической и формальной кинетики, термодинамики, теории информации.
Эти понятия отражают природу основных взаимодействий и законов движения материи, что, как известно, составляет предмет физики – как фундаментальной естественной науки. В центре внимания биофизики как биологической науки лежат биологические процессы и явления.

2 Развитие и становление биофизики как пограничной науки проходило ряд стадий. Уже на начальных этапах биофизика была тесно связана с идеями и методами физики, химии, физической химии и математики.
Проникновение и применение законов физики для описания различных закономерности живой природы встретило целый ряд трудностей.
Ещё в прошлом веке делались попытки использовать методы и теории физики для изучения и понимания природы биологических явлений. Причём исследователи рассматривали живые ткани и клетки как физические системы и не учитывали того факта, что основную роль в этих системах играет химия. Именно поэтому попытки решать задачи оценки свойств биологического объекта с чисто физических позиций носили наивный характер.
Основным методом этого направления являлись поиски аналогий.

Например эффект мышечного сокращения объясняли по аналогии с пьезоэлектрическим эффектом, на основании только того факта, что при наложении потенциала на кристалл происходило изменение длины кристалла, примерно так же как происходило изменение длины мышцы при сокращении. Рост клеток считали аналогичным росту кристалла. Клеточное деление рассматривали как явление, обусловленное только поверхностно-активными свойствами наружных слоёв протоплазмы. Амебоидное движение клеток уподоблялось изменению поверхностного натяжения и, соответственно, его моделировали движением ртутной капли в растворе кислоты.
Даже значительно позже, в двадцатые годы нашего столетия, детально рассматривали и изучали модель нервного проведения на анализе поведения так называемой модели Лили. Эта модель представляла собой железную проволоку, которая погружалась в раствор кислоты и покрывалась при этом плёнкой окиси. При нанесении на поверхность царапины окись разрушалась, а затем восстанавливалась, но одновременно разрушалась в соседнем участке и так далее. Возникновение и развитие в физике квантовой теории привело к попытке объяснить действие лучистой энергии на биологические объекты с позиции статистической физики. В это время появляется формальная теория, которая объясняла лучевое поражение как результат случайного попадания кванта (или ядерной частицы) в особо уязвимые клеточные структуры. Ещё сравнительно недавно на основании формального сходства закономерностей электропроводности живых тканей и электропроводности проводников полупроводников пытались применить теорию полупроводников для объяснения структурных особенностей целых клеток.
Это направление, базирующееся на моделях и аналогиях, хотя и может привлечь к работе весьма совершенный математический аппарат, вряд ли приблизит биологов к пониманию сущности биологических процессов.
Значительно более плодотворным оказалось внедрение физики в химию. Применение физических представлений сыграло большую роль в понимании механизмов химических процессов. Возникновение физической химии сыграло революционную роль. На основе тесного контакта физики и химии возникли современная химическая кинетика и химия полимеров.
Именно с возникновением физической химии связано развитие биофизики.
Многие важные для биологии представления пришли в неё из физической химии. Достаточно напомнить, что применение физико-химической теории растворов электролитов к биологическим процессам, привело к представлению о важной роли ионов в основных процессах жизнедеятельности.
С развитием физической и коллоидной химии расширяется фронт работ в области биофизики расширяется. Появляются попытки объяснить с этих позиций механизмы реагирования организма на внешние воздействия. Так большую роль в развитии биофизики сыграла школа Лёба (J. Loeb 1906 г).

1. Молекулярная биофизика. Изучает строение и физические свойства молекул, входящих в состав организма (прежде всего белков и нуклеиновых кислот), исследует условия равновесия молекулярных биологических процессов, изменения их течения во времени, термодинамику биологических процессов. Основная проблема заключается в том, чтобы раскрыть природу взаимодействия атомных групп, определяющих конформационные особенности и внутреннюю динамику биологических макромолекул, механизмы взаимодействия электронных и конформационных переходов и этой основе понять механизм функционирования биополимеров в живых системах.
2. Биофизика мембранных процессов или биофизика клетки. Изучает физические и физико-химические особенности клеточных структур, закономерности деления и дифференцировки клеток, а также такие высокоспециализированные функциональные проявления клеток, как генерация возбуждения и биопотенциалы. Эта часть биофизики изучает молекулярную организацию и конформационные свойства биологических мембран, биофизику процесса транспорта веществ через мембрану, электрогенез.
3. Биофизика фотобиологических процессов. Изучает механизмы фотоэнергетических и фоторецепторных систем, выясняет роль и механизмы участия электронно-возбужденных состояний в биологических процессах.
4. Биофизика органов чувств. Изучает функционирование этих систем в физических и биологических аспектах и исследует превращение энергии, которые происходят при восприятии внешних раздражений.
5. Биофизика сложных систем. Изучает проблемы регулирования и саморегулирования сложноустроенных многоклеточных организмов.

Современный этап развития биофизики характеризуется тем, что на первый план выступает проблема формулировки исходных теоретических понятий, отражающих фундаментальные механизмы взаимодействия в биологических системах на молекулярном уровне. Вместе с тем специфика биологических систем представляется в своеобразии физических механизмов молекулярных процессов. Принципиальная особенность заключается в том, что характерные параметры элементарных взаимодействий могут изменяться в зависимости от условий их протекания в организме. Например, эффективность скоростей отдельных элементарных актов переноса электрона в реакционном центре фотосинтеза не только изменяются направленно в течение жизненного цикла развития, но и различна у сортов растений, отличающихся по физико-биохимическим показателям и продуктивности. Изучение глубоких биофизических механизмов в связи с физиолого-биохимическими особенностями объекта создают базу и для практического применения биофизических исследований, в частности в медицине.

Без термодинамического подхода к исследованию биологических процессов невозможно правильно рассчитать пищевой рацион для человека.
Изучение скорости биологических процессов позволяет установить закономерности ряда биологических явлений – роста, размножения, метаболизма не только в условиях нормального функционирования организма, но при патологических изменениях – бактериальной интоксикации, действие ионизирующего излучения, аллергии и т.д.
Изучение проницаемости клеток и тканей в биофизическом аспекте позволяют фармакологам и токсикологам установить закономерности всасывания в организме и выведения из организма различных препаратов.

Особое значение эти вопросы приобрели в настоящее время в связи с установлением взаимосвязи расстройств водно-солевого баланса с различными патологическими процессами и наиболее часто встречающимися послеоперационными осложнениями.
Биофизические методы (ЭКГ, ЭЭГ, ЭМГ) и проведение электрического тока в живых системах имеют важное значение для ранней диагностики ряда заболеваний, а также для оценки процессов роста, развития, регенерации и жизнеспособности тканей, используемых при трансплантации.
Без соответствующих биофизических исследований нельзя достоверно выявить все проблемы связанные с функционированием органа зрения. слуха, вкусовым ощущениям, нельзя установить все закономерности работы сердца, влияния излучений различной природы.

Литература:1, с. 230-270

Контрольные вопросы:
1 Назовите основные разделы биофизики.
2 Каковы задачи биофизики как фундаментальной и прикладной науки на современном этапе?