Оператор декартового произведения
Примитивные реляционные операторы
Оператор деления
Оператор пересечения
Оператор соединения
Зависимые реляционные операторы
Как было сказано в начале главы, не все операторы реляционной алгебры являются независимыми - некоторые из них выражаются через другие реляционные операторы.
Оператор соединения определяется через операторы декартового произведения и выборки. Для оператора естественного соединения добавляется оператор проекции.
Оператор пересечения выражается через вычитание следующим образом:
Оператор деления выражается через операторы вычитания, декартового произведения и проекции следующим образом:
Таким образом показано, что операторы соединения, пересечения и деления можно выразить через другие реляционные операторы, т.е. эти операторы не являются примитивными.
Оставшиеся реляционные операторы (объединение, вычитание, декартово произведение, выборка, проекция) являются примитивными операторами - их нельзя выразить друг через друга.
Оператор декартового произведения - это единственный оператор, увеличивающий количество атрибутов, поэтому его нельзя выразить через объединение, вычитание, выборку, проекцию.