Замкнутость реляционной алгебры
Обзор реляционной алгебры
Третья часть реляционной модели, манипуляционная часть, утверждает, что доступ к реляционным данным осуществляется при помощи реляционной алгебры или эквивалентного ему реляционного исчисления.
В реализациях конкретных реляционных СУБД сейчас не используется в чистом виде ни реляционная алгебра, ни реляционное исчисление. Фактическим стандартом доступа к реляционным данным стал язык SQL (Structured Query Language). Язык SQL представляет собой смесь операторов реляционной алгебры и выражений реляционного исчисления, использующий синтаксис, близкий к фразам английского языка и расширенный дополнительными возможностями, отсутствующими в реляционной алгебре и реляционном исчислении. Вообще, язык доступа к данным называется реляционно полным, если он по выразительной силе не уступает реляционной алгебре (или, что то же самое, реляционному исчислению), т.е. любой оператор реляционной алгебры может быть выражен средствами этого языка. Именно таким и является язык SQL.
В данной главе будут рассмотрены основы реляционной алгебры.
Реляционная алгебра представляет собой набор операторов, использующих отношения в качестве аргументов, и возвращающие отношения в качестве результата. Таким образом, реляционный оператор выглядит как функция с отношениями в качестве аргументов:
Реляционная алгебра является замкнутой, т.к. в качестве аргументов в реляционные операторы можно подставлять другие реляционные операторы, подходящие по типу:
Таким образом, в реляционных выражениях можно использовать вложенные выражения сколь угодно сложной структуры.
Каждое отношение обязано иметь уникальное имя в пределах базы данных. Имя отношения, полученного в результате выполнения реляционной операции, определяется в левой части равенства. Однако можно не требовать наличия имен от отношений, полученных в результате реляционных выражений, если эти отношения подставляются в качестве аргументов в другие реляционные выражения. Такие отношения будем называть неименованными отношениями. Неименованные отношения реально не существуют в базе данных, а только вычисляются в момент вычисления значения реляционного оператора.
Традиционно, вслед за Коддом [43], определяют восемь реляционных операторов, объединенных в две группы.
Теоретико-множественные операторы:
- Объединение
- Пересечение
- Вычитание
- Декартово произведение
Специальные реляционные операторы:
- Выборка
- Проекция
- Соединение
- Деление
Не все они являются независимыми, т.е. некоторые из этих операторов могут быть выражены через другие реляционные операторы.