Поколения ЭВМ и их особенности 2 страница

Современный компьютер – это система, построенная на базе электронных микросхем и предназначенная для хранения, обработки и передачи информации.

Наибольшее распространение в настоящее время получили персональные компьютеры (ПК), поэтому в дальнейшем речь пойдет именно о них.

Аппаратное обеспечение ПК – все те компоненты, из которых состоит компьютер, а также периферийное оборудование и оборудование для организации компьютерных сетей.

Прежде всего, это процессор, материнская плата и ее главная микросхема – чипсет, определяющий всю архитектуру ПК, возможные типы основной памяти, видеокарт, дисковых устройств, мониторов и периферийных устройств.

Процессор – специальная микросхема, которая выполняет операции по обработке информации. Кроме центрального процессора в современных компьютерах значительную роль играет процессор видеокарты.

Центральный процессор (CPU – Central Processing Unit) – функционально-законченное программно-управляемое устройство обработки информации, выполненное на одной или нескольких СБИС.

От процессора в значительной степени зависит скорость работы ПК. Он имеет сложную архитектуру (рис. 11), свою высокоскоростную буферную память (кэш-память), использует специальные технологии обработки информации.

Рис. 11 Принципиальная схема процессора по данным фирмы Intel

Принцип работы процессора можно представить следующим образом: информация для обработки под управлением блока предварительной выборки поступает из основной памяти через блок шины в кэш данных процессора, команды обработки информации – в командную кэш-память. В блоке декодировки команда расшифровывается, преобразуясь в двоичный код, который посылается в управляющий блок и в кэш данных, давая указание о том, как с полученной командой поступить. Арифметико-логическое выполняет готовые к исполнению команды и заносит результаты в блок регистров. Далее содержимое регистров передается в основную память или на внешние устройства.

Скорость работы процессора зависит прежде всего от типа и архитектуры процессора, а также от его тактовой частоты и объема кэш-памяти.

В современных ПК разных фирм применяются процессоры следующих архитектур:

· CISC – Complex Instruction Set Computing – концепция проектирования процессоров, которая характеризуется следующим набором свойств: большим числом различных по формату и длине команд; введением большого числа различных режимов адресации; обладает сложной кодировкой инструкции.

Процессору с архитектурой CISC приходится иметь дело с более сложными инструкциями неодинаковой длины. Выполнение одиночной CISC-инструкции может происходить быстрее, однако обрабатывать несколько таких инструкций параллельно сложнее.

Облегчение отладки программ на ассемблере влечет за собой загромождение узлами микропроцессорного блока. Для повышения быстродействия следует увеличить тактовую частоту и степень интеграции, что вызывает необходимость совершенствования технологии и, как следствие, удорожание производства.

· RISC – Reduced Instruction Set Computing – процессор с сокращенным набором команд. Система команд имеет упрощенный вид. Все команды одинакового формата с простой кодировкой. Обращение к памяти происходит посредством команд загрузки и записи, остальные команды типа регистр-регистр. Команда, поступающая в CPU, уже разделена по полям и не требует дополнительной дешифрации.

Часть кристалла освобождается для включения дополнительных компонентов. Степень интеграции ниже, чем в предыдущем архитектурном варианте, поэтому при высоком быстродействии допускается более низкая тактовая частота. Команда меньше загромождает ОЗУ, CPU дешевле. Программной совместимостью указанные архитектуры не обладают. Отладка программ на RISC более сложна. Данная технология может быть реализована программно-совместимым с технологией CISC (например, суперскалярная технология).

Поскольку RISC-инструкции просты, для их выполнения нужно меньше логических элементов, что в конечном итоге снижает стоимость процессора. Но большая часть программного обеспечения сегодня написана и откомпилирована специально для CISC-процессоров фирмы Intel. Для использования архитектуры RISC нынешние программы должны быть перекомпилированы, а иногда и переписаны заново.

· MISC – Multipurpose lnstruction Set Computer) сочетает преимущества вышерассмотренных архитектур. Элементная база состоит из двух частей, которые либо выполнены в отдельных корпусах, либо объединены. Основная часть – RISC CPU, расширяемый подключением второй части – ПЗУ микропрограммного управления. Система приобретает свойства CISC. Основные команды работают на RISC CPU, а команды расширения преобразуются в адрес микропрограммы. RISC CPU выполняет все команды за один такт, а вторая часть эквивалентна CPU со сложным набором команд. Наличие ПЗУ устраняет недостаток RISC, выраженный в том, что при компиляции с языка высокого уровня микрокод генерируется из библиотеки стандартных функций, занимающей много места в ОЗУ. Поскольку микропрограмма уже дешифрована и открыта для программиста, то времени выборки из ОЗУ на дешифрацию не требуется.

Чипсет (chipset) – набор микросхем материнской платы для обеспечения работы процессора с памятью и внешними устройствами. Выбор чипсета зависит от процессора, с которым он работает, и определяет вид других устройств ПК (оперативной памяти, видеокарты, винчестера и др.).

Материнская плата (motherboard) – печатная плата, на которой осуществляется монтаж микросхем и других компонентов компьютерной системы. На материнской плате располагаются микросхемы чипсета, разъемы для подключения центрального процессора, оперативной памяти, графической и звуковой плат и других устройств.

Существуют различные форм-факторы[7], описывающие конструктивные особенности материнских плат. Наиболее важными микросхемами материнской платы являются северный и южный мосты чипсета. Именно чипсет определяет, в значительной степени, особенности материнской платы и то, какие устройства могут подключаться к ней.

Общая шина, наряду с центральным процессором и запоминающим устройством, во многом определяет производительность работы компьютера, так как обеспечивает обмен информацией между функциональными узлами. Общая шина делится на три отдельные шины по типу передаваемой информации: шина адреса, шина данных, шина управления.

Каждая шина характеризуется шириной – числом параллельных проводников для передачи информации. Другим важным параметром шины является тактовая частота шины – это частота, на которой работает контроллер шины при формировании циклов передачи информации.

Шина адреса предназначена для передачи адреса ячейки памяти или порта ввода-вывода. Ширина шины адреса определяет максимальное количество ячеек, которое она может напрямую адресовать.

Шина данных предназначена для передачи команд и данных, и ее ширина во многом определяет информационную пропускную способность общей шины. В современных компьютерах ширина шины данных составляет 32-64.

Шина управления включает в себя все линии, которые обеспечивают работу общей шины. Ее ширина зависит от типа шины и определяется алгоритмом ее работы или, как говорят, протоколом работы шины. Протокол работы шины состоит из нескольких циклов и выполняется контроллером шины, расположенным внутри процессора или отдельным контроллером шины.

Другим важным функциональным узлом компьютера является память. Традиционным решением проблемы хранения большого количества данных и обращения к ним является иерархическая структура памяти (рис. 12).

Рис. 12 Иерархия памяти ПК

По мере продвижения по структуре сверху вниз возрастают три параметра. Во-первых, увеличивается время доступа. Во-вторых, увеличивается объем памяти. В-третьих, увеличивается количество битов, которое вы получаете за 1 рубль.

Микропроцессорная память – память небольшой емкости, но чрезвычайно высокого быстродействия. Она предназначена для кратковременного хранения, записи и выдачи информации, непосредственно в ближайшие такты работы машины участвующей в вычислениях, МПП используется для обеспечения высокого быстродействия машины, ибо основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Микропроцессорная память состоит из быстродействующих регистров с разрядностью не менее машинного слова. Количество и разрядность регистров в разных микропроцессорах различны.

Регистры микропроцессора делятся на регистры общего назначения и специальные. Специальные регистры применяются для хранения различных адресов (адреса команды, например), признаков результатов выполнения операций и режимов работы ПК (регистр флагов, например) и др. Регистры общего назначения являются универсальными и могут использоваться для хранения любой информации, но некоторые из них тоже должны быть обязательно задействованы при выполнении ряда процедур.

Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта память называется кэш-памятью (от англ. cache – запас). Время обращения к данным в кэш-памяти на порядок ниже, чем у ОЗУ, и сравнимо со скоростью работы самого процессора.

Запись в кэш-память осуществляется параллельно с запросом процессора к ОЗУ. Данные, выбираемые процессором, одновременно копируются и в кэш-память. Если процессор повторно обратится к тем же данным, то они будут считаны уже из кэш-памяти. Такая же операция происходит и при записи процессором данных в память. Они записываются в кэш-память, а затем в интервалы, когда шина свободна, переписываются в ОЗУ. Современные процессоры имеют встроенную кэш-память, которая находится внутри процессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, кэш-память делится на уровни. На кристалле самого процессора находится кэш-память первого уровня. В корпусе процессора, но на отдельном кристалле находится кэш-память второго уровня. И, наконец, кэш-память третьего уровня расположена на системной плате.

Управление записью и считыванием данных в кэш-память выполняется автоматически. Когда кэш-память полностью заполняется, то для записи последующих данных устройство управления кэш-памяти по специальному алгоритму автоматически удаляет те данные, которые реже всего использовались процессором на текущий момент.

Использование процессором кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.

Память, в которой хранятся исполняемые программы и данные, называется оперативной памятью (оперативным запоминающим устройством – ОЗУ) или RAM – Random Access Memory – память со свободным доступом. Существует два вида ОЗУ: динамическое ОЗУ или DRAM – Dynamic RAM – и статическое ОЗУ или SRAM – Static RAM.

Разряд динамического ОЗУ построен на одном транзисторе и конденсаторе, наличие или отсутствие заряда на котором определяет значение, записанное в данном бите. При записи или чтении информации из такой ячейки требуется время для накопления заряда на конденсаторе, поэтому быстродействие динамического ОЗУ на порядок ниже, чем у статического ОЗУ, разряд которого представляет собой триггер на нескольких транзисторах. Однако, из-за большого числа элементов на один разряд в одну СБИС статического ОЗУ помещается гораздо меньше элементов, чем у динамического ОЗУ. Кроме этого, статические ОЗУ более энергоемки и значительно дороже. Обычно в качестве оперативной или видеопамяти используется динамическое ОЗУ, а в качестве небольшой сверхбыстродействующей буферной памяти – статическое ОЗУ.

В одном адресном пространстве с ОЗУ находится специальная память, предназначенная для постоянного хранения таких программ, как тестирование и начальная загрузка компьютера, управление внешними устройствами. Она является энергонезависимой, т.е. сохраняет записанную информацию при отсутствии напряжения питания. Такая память называется постоянным запоминающим устройством – ПЗУ или ROM – Read Only Memory. Постоянные запоминающие устройства можно разделить по способу записи в них информации на следующие категории:

· ПЗУ, программируемые однократно – программируются при изготовлении и не позволяют изменять записанную в них информацию;

· перепрограммируемые ПЗУ – ППЗУ – позволяют перепрограммировать их многократно. Стирание хранящейся в ППЗУ информации осуществляется или засветкой полупроводникового кристалла ультрафиолетовым излучением, или электрическим сигналом повышенной мощности, для этого в корпусе микросхемы предусматривается специальное окно, закрытое кварцевым стеклом.

В отличие от оперативного запоминающего устройства, внешние запоминающие устройства (ВЗУ) обладают большим объемом сохраняемой информации и являются энергонезависимыми. Наибольшее распространение в настоящее время получили дисковые ВЗУ, которые, в зависимости от типа носителя, можно разделить на магнитные, оптические и смешанные.

Магнитные диски в качестве запоминающей среды используют магнитные материалы со специальными свойствами, позволяющими фиксировать два состояния. Информация на магнитные диски записывается и считывается магнитной головкой, которая перемещается радиально с фиксированным шагом, а сам диск при этом вращается вокруг своей оси. Головка считывает или записывает информацию, расположенную на концентрической окружности, которая называется дорожкой или треком. Количество дорожек на диске определяется шагом перемещения головки и зависит от технических характеристик привода диска и качества самого диска. За один оборот диска может быть считана информация с одной дорожки. Общее время доступа к информации на диске складывается из времени перемещения головки на нужную дорожку и времени одного оборота диска. Каждая дорожка дополнительно разбивается на ряд участков – секторов. Сектор содержит минимальный блок информации, который может быть записан или считан с диска. Чтение и запись на диск осуществляется блоками, поэтому дисководы называют блочными устройствами.

Физическая структура диска определяется количеством дорожек и числом секторов на каждой дорожке. Она задается при форматировании диска, которое выполняется специальными программами и должно быть проведено перед первым использованием диска для записи информации. Кроме физической структуры диска, говорят еще о логической структуре диска. Логическая структура определяется файловой системой, которая реализована на диске и зависит от операционной системы компьютера, на котором используется данный диск. Логическая структура подразумевает выделение некоторого количества секторов для выполнения служебных функций размещения файлов и каталогов на диске.

Оптический компакт-диск (Compact Disk – CD), который был предложен в 1982 г. фирмами Philips и Sony первоначально для записи звуковой информации, произвел переворот и в компьютерной технике, так как идеально подходил для записи цифровой информации больших объемов на сменном носителе.

В середине 90-х гг. появились устройства, устанавливаемые непосредственно на компьютере и позволяющие производить однократную запись информации на компакт-диск. Для таких устройств выпускают специальные компакт-диски, которые получили название CD-Recodable (CD-R).

Позднее появились компакт-диски с возможностью перезаписи – CD-ReWritable (CD-RW).

Дальнейшее развитие технологий производства компакт-дисков привело к созданию дисков с высокой плотностью записи – цифровой универсальный диск Digital Versatile Disk (DVD). Это позволило увеличить объем информации на диске до 4,7 Гбайт. Дальнейшее увеличение объема информации обеспечивается применением двусторонних DVD.

К недостаткам дисковой памяти можно отнести наличие механических движущихся компонентов, имеющих малую надежность, и большую потребляемую мощность при записи и считывании. Появление большого числа цифровых устройств, таких как МРЗ-плееры, цифровые фото- и видеокамеры, карманные компьютеры, потребовало разработки миниатюрных устройств внешней памяти, которые обладали бы малой энергоемкостью, небольшими размерами, значительной емкостью и обеспечивали бы совместимость с персональными компьютерами. Первые промышленные образцы такой памяти появились в 1994 г. Новый тип памяти получил название флэш-память (Flash-memory). Флэш-память представляет собой микросхему перепрограммируемого постоянного запоминающего устройства (ППЗУ) с неограниченным числом циклов перезаписи. В ППЗУ флэш-памяти использован новый принцип записи и считывания, отличный от того, который используется в известных схемах ППЗУ. Конструктивно флэш-память выполняется в виде отдельного блока, содержащего микросхему флэш-памяти и контроллер, для подключения к одному из стандартных входов компьютера.

К устройствам ввода информации ПК относятся, прежде всего, клавиатура и мышь. Реже используются дигитайзер, web-камера, сканер.

Клавиатурой называется устройство для ручного ввода информации в компьютер. Современные типы клавиатур различаются, в основном, принципом формирования сигнала при нажатии клавиши.

Среди современных типов клавиатур можно отметить беспроводную клавиатуру, в которой передача информации в компьютер происходит с помощью датчика инфракрасного излучения, аналогично пультам управления различной бытовой техники; USB-клавиатуру; мультимедийную клавиатуру.

Манипулятор мышь – инструмент для работы с объектами на рабочем столе операционной системы. В настоящее время используются мыши двух типов – оптические и лазерные, проводные и безпроводные.

Существуют беспроводные комплекты клавиатура + мышь с единым приемником радиосигнала.

Дигитайзер (digitizer) – это кодирующее устройство, обеспечивающее ввод двумерного (в том числе и полутонового) или трехмерного (3D дигитайзеры) изображения в компьютер в виде растровой таблицы, является типичным внешним специализированными устройства графического ввода.

В состав устройства входит специальный указатель с датчиком, называемый пером. Собственный контроллер посылает импульсы по ортогональной сетке проводников, расположенной под плоскостью планшета. Получив два таких сигнала, контроллер преобразует их в координаты, передаваемые в ПК. Компьютер переводит эту информацию в координаты точки на экране монитора, соответствующие положению указателя на планшете. С помощью пера Вы рисуете на планшете, при этом графические редакторы могут воспринимать его как кисть, карандаш, мелок и т.д. Перевернув перо, Вы можете стереть изображение.

Основные типы дигитайзеров по принципу работы:

· ультразвуковые;

· электромагнитные;

· лазерные;

· механические.

Сканер – устройства для решения задач перевода бумажных документов в электронные копии. Установленный в сканер источник света облучает сканируемый объект, а оптическая система воспринимает отраженный от объекта световой поток, который с помощью программы сканирования преобразуется в цифровую форму. Сканеры бывают черно-белые и цветные. Конструктивно сканеры делятся на четыре типа: ручные, планшетные, роликовые и проекционные.

Ручные сканеры перемещаются по изображению вручную. Они выполнены в виде блока с рукояткой, который «прокатывают» по изображению. Все изображение сканируется за несколько проходов. Специальное программное обеспечение, поставляемое вместе со сканерами, позволяет совмещать части отсканированного изображения. Ручные сканеры имеют малые габариты и низкую стоимость и позволяют сканировать изображения любого размера, но могут возникать искажения при совмещении частей изображения.

Планшетные сканеры являются наиболее распространенным типом сканера. В них сканирующая головка (линейка светодиодов) движется относительно неподвижного оригинала, который помещается на прозрачное стеклянное основание. Достоинство таких сканеров заключается в том, что с их помощью можно сканировать и листовые и сброшюрованные документы (книги). К недостаткам планшетных сканеров можно отнести необходимость ручного позиционирования каждой страницы оригинала.

Роликовые сканеры используются для пакетной обработки листовых документов. В них подача очередного листа для сканирования происходит автоматически. Сканирующая головка в таких сканерах неподвижна, а лист оригинала перемещается относительно нее. К недостаткам роликовых сканеров можно отнести проблему выравнивания листов и сложность работы с листами нестандартного размера.

Проекционные сканеры отличаются от других типов тем, что оригинал устанавливается в рамку, и сканирование проводится на просвет, как правило, с масштабированием.

Устройства вывода информации предназначены для представления различных видов информации, с которыми работает компьютер, в привычном для человека виде. К устройствам вывода относятся видеокарты и мониторы, принтеры, плоттеры, звуковые платы и колонки.

Видеоадаптер – устройство для сопряжения ПК с монитором. Может быть интегрирован с материнской платой или выполнен в виде отдельной платы, подключаемой к слоту PCI Express.

Монитор – устройство отображения информации, формируемой видеоадаптером. До недавнего времени выпускались и использовались мониторы на основе электронно-лучевой трубки – CRT– Cathode Ray Tube. В таких мониторах луч, двигающийся горизонтально, периодически засвечивает люминофор экрана, который под действием потока электронов начинает светиться, образуя точку. Для цветных мониторов засветка каждой точки осуществляется тремя лучами, вызывающими свечение люминофора соответствующего цвета – красного, зеленого и синего. Цвет точки создается смешением этих цветов и зависит от интенсивности каждого электронного луча.

В настоящее время основным типом мониторов для ПК стали жидкокристаллические мониторы – LCD Liquid Cristal Display). Эти мониторы используют специальную прозрачную жидкость, которая при определенных напряженностях электростатического поля кристаллизуется, при этом изменяется ее прозрачность и коэффициент преломления световых лучей. Эти эффекты используются для формирования изображения.

Кроме того существуют плазменные мониторы – PDP – Plasma Display Panels. В таких мониторах изображение формируется светом, выделяемым при газовом разряде в каждом пикселе экрана.

Основными характеристиками монитора являются:

· размер экрана – обычно измеряется в дюймах;

· разрешение или разрешающая способность – характеризует способность отображать на экране определенное количество точек по горизонтали и вертикали;

· частота кадровой развертки или частота смены кадров – сколько раз в секунду изображение обновляется; измеряется в герцах;

· угол обзора.

Принтер – устройство вывода данных на бумагу или иной аналогичный материал. В настоящее время получили распространение струйные и лазерные принтеры.

Основные характеристики принтеров:

· качество печати;

· разрешающая способность;

· производительность.

Плоттер или графопостроитель – устройство вывода графической информации на бумажные и другие листовые носители. Плоттеры делятся на два больших класса: векторные и растровые. В настоящее время в основном используются струйные плоттеры с термической и пьезоэлектрической технологиями печати, лазерные и LED-плоттеры.

Существует большое количество разновидностей копировально-множительных аппаратов. Для получения небольшого количества копий (до 25 экземпляров), целесообразно пользоваться средствами копирования документации. При большом тиражировании (более 25 экземпляров) целесообразно пользоваться средствами размножения документов.

Принципиальное отличие средств копирования от средств размножения в том, что при копировании копия снимается непосредственно с документа – оригинала, а при размножении – с промежуточной печатной формы, изготовленной с документа – оригинала.

Основные характеристики копировальных аппаратов:

· формат оригинала и копии;

· скорость копирования;

· стоимость копирования;

· производительность;

· рекомендуемый объём копирования (ресурс).

Проекционный аппарат предназначен для вывода видеоинформации с компьютера на большой экран. Наиболее популярные проекторов на сегодня LCD и DLP – Digital Light Processing. Принципиальное различие технологий заключается в элементах, с помощью которых формируется изображение. В первом случае – это жидкокристаллическая матрица, через которую пропускается свет от источника, во втором – матрица микроскопических подвижных зеркал.

Для организации работы локальных сетей может использоваться следующее основное оборудование:

· интегрированные на материнской плате сетевые адаптеры или сетевые интерфейсные платы;

· концентраторы;

· коммутаторы;

· кабели;

· маршрутизаторы.

Сетевые адаптеры обеспечивают работу ПК в локальной сети. Набор выполняемых адаптером функций зависит от конкретного сетевого протокола. Ввиду того, что сетевой адаптер и в физическом, и в логическом смысле находится между устройством и сетевой средой, его функции можно разделить на функции сопряжения с сетевым устройством и функции обмена с сетью. Количественный и качественный состав функций сопряжения с сетевым устройством определяется его назначением и функциональной схемой. Если в качестве сетевого устройства выступает компьютер, то связь с сетевой средой можно реализовать двумя способами: через системную магистраль (шину) или через внешние интерфейсы (последовательные или параллельные порты).

По конструктивной реализации сетевые платы делятся на:

· внутренние – отдельные платы, вставляющиеся в ISA,PCI или PCI-E слот;

· внешние, подключающиеся через LTP, USB или PCMCIA интерфейс, преимущественно использующиеся в ноутбуках;

· встроенные в материнскую плату.

Концентратор или хаб (hub – центр) – устройство для объединения компьютеров в сеть Ethernet с применением кабельной инфраструктуры типа витая пара. В настоящее время практически вытеснены сетевыми коммутаторами. При применении концентратора все пользователи делят между собой полосу пропускания сети.

Коммутатор (switch – переключатель) – устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Коммутатор предоставляет каждому устройству, подключенному к одному из его портов, всю полосу пропускания сети. Это повышает производительность и уменьшает время отклика сети за счет сокращения числа пользователей на сегмент.

В отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству. В результате уменьшается трафик и повышается общая пропускная способность – факторы, являющиеся критическими с учетом растущих требований к полосе пропускания сети современных сложных приложений.

Кабели – общепринятая среда обмена данными между сетевыми устройствами. Они выступают в качестве среды передачи сигналов между компьютерами. В большинстве сетей применяются только три основные группы кабелей:

· коаксиальный кабель (coaxial cable): тонкий и толстый;

· витая пара (twisted pair): неэкранированная (unshielded) и экранированная (shielded);

· оптоволоконный кабель (fiber optic).

Маршрутизатор или роутер (router) – специализированный сетевой компьютер, имеющий минимум два сетевых интерфейса и пересылающий пакеты между различными сегментами сети, принимающий решения о пересылке на основании информации о топологии сети и определенных правил, заданных администратором. Маршрутизаторы делятся на программные и аппаратные.

В настоящее время все большее распространение получает беспроводное соединение компьютеров. Оборудование беспроводных сетей включает сетевые адаптеры, точки доступа и беспроводные маршрутизаторы.


 

Раздел 3. Программные средства реализации информационных процессов

Программное обеспечение – совокупность программ, позволяющих осуществлять на компьютере автоматизированную обработку информации. Программное обеспечение традиционно делят на три группы (рис. 13):

· системное программное обеспечение;

· прикладное программное обеспечение;

· инструментальное программное обеспечение.

Рис. 13 Структура программного обеспечения

В то же время в состав основных системных средств – операционных систем – входят и компоненты прикладного ПО, например, текстовые редакторы.

Системное программное обеспечение управляет всеми ресурсами ЭВМ и осуществляет общую организацию процесса обработки информации и интерфейс ЭВМ с проблемной средой, в частности с пользователем. Системное ПО включает операционные системы, средства расширения возможностей операционных систем и средства тестирования и диагностики ЭВМ.

Прикладное ПО составляют пакеты прикладных программ, предназначенные для решения определенного круга задач из различных проблемных областей, а также менее крупные программы-утилиты, преследующие более узкие, но достаточно важные цели снижения трудоемкости и повышения эффективности работы пользователя.

Инструментальное ПО предназначено для создания оригинальных программных средств в любой проблемной области, включая системное ПО.