І ітерація

Вибираємо точку, що належить множині допустимих планів задачі. Розглянемо, наприклад, точку .

Визначимо градієнт цільової функції:

.

В точці обчислюємо значення градієнта:

.

Використовуючи розраховане значення градієнта, записуємо і вводимо нову цільову функцію: . Маємо таку задачу лінійного програмування:

maxZ=16x1+12x2

.

Розв’язуючи цю задачу симплексним методом, знаходимо її оптимальний план: .

Знайдемо новий допустимий план задачі, використовуючи формулу для визначення координат наступної точки.

Визначаємо координати точки Х1:

, ,

Знайдемо крок λ1 такий, за якого досягається максимальне значення цільової функції. Для цього підставимо розраховані значення для х1, х2, які виражені через λ1, у цільову функцію :

Отримали функцію, що залежить від . Знайдемо значення , за якого функція досягає максимуму, тобто коли її похідна дорівнює нулю:

Оскільки 0≤λ1≤1, то беремо λ1=1. Тоді наступна точка Х1 має координати:

.

Для знайденої точки X1(x1=10;x2=5) обчислюємо значення цільової функції: F=165.