Данные и знания
При изучении интеллектуальных систем традиционно возникает вопрос – что же такое знания и чем они отличаются от обычных данных, обрабатываемых ЭВМ.
Данные – это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.
Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека, обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путём. Таким образом, знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.
Часто используются такие определения знаний: знания – это хорошо структурированные данные, или данные о данных, или метаданные.
Для хранения знаний используются базы знаний (небольшого объёма, но исключительно дорогие информационные массивы). База знаний – основа любой интеллектуальной системы.
Знания могут быть классифицированы по следующим категориям:
· поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;
· глубинные – абстракции, аналогии, схемы, отображающие структуру и процессы в предметнойобласти.
Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет адекватных моделей, позволяющих работать с глубинными знаниями.
Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, «растворённые» в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и всё большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний.
Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.
Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:
· продукционные;
· семантические сети;
· фреймы;
· формальные логические модели.