МЕХАНИЧЕСКИЕ СВОЙСТВА СКАЛЬНЫХ ГРУНТОВ.

Напряжения, возникающие под действием прилагаемых внешних нагрузок, ведут к нарушению ее прочности и сплошности. В скальных породах деформации упругие. При росте напряжения возрастает деформация, которая при максимальном напряжении Рмакс приводит к разрушению горной породы ( см. рис) В этом случае горная порода ведет себя как всякое твердое тело, подчиняясь закону Гука : относительная деформация прямо пропорциональна напряжению.

При деформировании полускальных пород (мергель, мел) вначале деформация возрастает пропорционально напряжению, однако после достижения предела пропорциональности Рпр наступает не разрушение, а смятие или так называемое пластическое течение породы, что выражается в появлении трещин, изменению форм образца (см. рис 2)


Это напряжение соответствует пределу текучести Rт и в некоторых случаях деформация может нарастать без увеличения напряжения т.е. при Р=const ( ползучесть). Явление ползучести характеризует прочность породы во времени т.к. ползучесть обязательно заканчивается разрешением (см.точку Рз=Rz ) таким образом предел прочности твердых пород оценивается максимальной нагрузкой, приложенной к образцу горной породы в момент его разрушения (потеря сплошности)

 

Rz=Pmax F

F – площадь образца, см

Pma- внешняя нагрузка, Н

Rz-временное сопротивление сжатию или предел прочности, МПА

На прочность горных пород влияет: минеральный состав, характер внутренних связей, трещиноватость, степень выветрелости, степень размягчаемости. Наименьшей прочностью обладают размягчаемые породы.

К показателям деформируемости твердых горных пород относятся:

Модуль упругости Еу и модуль общей деформации Еоопределяют величину напряжений, вызвавших единичную относительную деформацию породы в результате приложения внешней нагрузки.

Коэффициент Пуассона (поперечной деформации) определяет, в какой мере происходит изменение объема грунта в процессе деформации и зависит от минералогического состава грунта, пористости и трещиноватости.

Коэффициент бокового давления (коэффициент распора) учитывает часть вертикальной нагрузки, передающейся в стороны.

 

 

ИНЖЕНЕРНО – ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ДИСПЕРСНЫХ ГРУНТОВ.

Дисперсные грунты. В этот класс входят только осадочные горные породы. Класс разделяется на две группы-связных и несвязных грунтов. Для этих грунтов характерны механические и водно-коллоидные структурные связи. Связные грунты делятся на три типа - минеральные (глинистые образования), органо-минеральные (илы, сапропели) и органические ( торфы ). Несвязанные грунты представлены песками и крупнообломочными породами (гравий, щебень) В основу разновидностей грунтов положены плотность, засоленность, гранулометрический состав и др. показатели.

Пылеватые и непылеватые, глинистые грунты и лессовые породы в большинстве случаев являются основаниями сооружений и являются дисперсными т.е. раздробленными, состоящими из мелких частиц. В дисперсных грунтах наблюдается тесное взаимодействие твердой, жидкой и газообразной фаз. В зависимости от условий существования грунта значение этих фаз меняется и вместе с тем меняются физико – механические свойства грунтов.

Для связных грунтов вследствие их анизотропности коэффициенты фильтрации в горизонтальном и вертикальном направлениях могут существенно отличаться. Особенно в грунтах неоднородных по своему строению - лессовых суглинках, ленточных глинах, торфах. При исследовании таких грунтов необходимо определять их водопроницаемость как в горизонтальном, так и вертикальном направлениях.


 

Глинистые грунты характеризуются вводно-коллоидными связями, которые обеспечивают первичное сцепление на начальных этапах превращения глинистого осадка в породу. На более поздних стадиях появляются цементные связи и соответствующее им сцепление упрочнения, которое постепенно переводит породу из ряда высокодисперсных систем в породы типа глинистых сланцев, аргиллитов.

Плотность глинистых грунтов изменяется от 2.53 – 2.85 г./см и зависит от минерального состава и органических примесей, а так же от влажности и степени уплотненности в природном залегании. Четвертичные глины морского, речного и ветрового происхождения имеют плотность 1.6 – 1.85 г/см; плотность скелета 1.35 – 1.55 гсм, а пористость 35 45 % . В порах глинистых грунтов кроме воздуха и воды может содержаться органический перегной гумус. В таких случаях эти грунты называются почвами и в них увеличивается влагоемкость, пластичность, сжатие под нагрузками.

Вода и ее количество предают грунтам ряд специфических (характерных) свойств: пластичность, липкость, набухание, усадка и размокание.

Угол внутреннего трения и сцепление С в значительной степени зависят от состояния влажности и пористости грунтов. Так, при мягкопластичном состоянии глины могут иметь угол не более 5-10, туггопластичные 15- 35.

Пылеватые глинистые грунты у которых , у которых пылеватых частиц больше, чем песчаных и которые обладают недоуплотненой структурой с очень водонеустойчивыми связями называют лессовыми. Особенностью лессовых грунтов является их просадочность.

Илы, сапропели заторфированные грунты относятся к органоминеральным грунтам. Все грунты высокопористы и водонасыщены. В их составе: 1) песчано-пылевато-глинистые частицы 2) органический минерал 3) вода - в большом колдичестве. Ил – водонасыщенный современный осадок водоемов, образовавшийсяпри наличии микробиологических процессов, имеющий влажность на границе текучести, и коэффицент пористости более 0.9. Для илов характерны структуры с коагуляционными связями, отличающиеся значительной пористостью (50-80 %), высокой влажностью, низкой прочностью, с хорошо выраженной тиксотропией и ползучестью минерального скелета. Водопроницаемость илов весьма мала т.к. в порах грунта присутствуют газы биохимической природы, так называемые защемленные газы. Механические свойства илов характеризуются их высокой сжимаемостью. Модуль общей деформации для них менее 4 МПА, коэффициент сжимаемости а=0.005-0.001 МПА. Сопротивление сдвигу у илов мало 0.0002-0.0007 МПА. Илы относятся к слабым грунтам строительство на которых возможно лишь с применением методов технической мелиорации.

Сапропель - пресноводный ил, образовавшийся при саморазложении органических остатков на дне застойных водоемов – озер. Сапропель при передаче на него давления способен вытекать из-под фундамента или отжиматься в стороны, если давление передается через слой торфа. При динамической нагрузке легко разжижается, при высыхании дает усадку и твердеет.

 

Торфы и заторфированные грунты- это грунты, образованные в болотах в результате накопления и разложения растительных осадков и содержащие минеральные примеси. Абсолютная влажность торфа может достигать 800-1000%, что указывает на его исключительно высокую влагоемкость. Плотность частиц от 1.4-1.8 г/см, плотность грунта то 0.7 до 1.4 г/см. В сухом состоянии торф может плавать на поверхности воды, т. к. плотность сухого грунта составляет 0.2-0.4 г/см. Торф обладает большой сжимаемостью, поэтому несущая способность у торфа низкая. Водопроницаемость торфа зависит от степени его разложения. Так, неразложившийся торф имеет коэффициент фильтрации, измеряющийся метрами в сутки, а хорошо разложившийся торф практически водонепроницаем и его Кф близкий к Кф глин. С инженерно-геологической точки зрения торфы относятся к слабым, к сильно и неравномерно деформируемым грунтам, обладающим очень изменчивыми свойствами, неблагоприятными для строительства.

 

Засоленными называются грунты, содержащие солевые включения в количестве. Влияющем на их физико-механические свойства. Они характеризуются степенью засоленности, под которой, в соответствии с ГОСТом 25100-95, понимается содержание легко и среднерастворимых солей в % от массы абсолютно сухого грунта. К легко растворимым солям относятся хлориды, бикарбонаты, карбонат натрия, сульфаты; к среднерастворимым гипс и ангидрит. Присутствие солей в грунтах приводит к изменению их прочности, сжимаемости, водопроницаемости, размокания, набухания, угла естественного откоса, липкости. При водонасыщении и увлажнении засоленные грунты теряют прочность, проявляют дополнительные суффозионные деформации, набухание, просадку и повышают агрессивность подземных вод. Растворенные компоненты выносятся водой в случае его фильтрационного движения, а в случае затрудненного оттока переходят а поровый раствор. Кроме того, в лессовых породах суффозионные процессы, в особенности на склонах, могут привести к образованию пустот и пещер. Это явление носит название лессовый карст, который может выражаться на поверхности земли в виде суффозионно-провальных воронок.

Основными типами засоленных грунтов являются солончаки - формируются в пониженных формах рельефа с близким к поверхности залеганием уровня грунтовых вод; Солонцы – формируются на более высоких отметках местности и располагаются как в поверхностных так и в более глубоких гори зонтах, такыры представляют собой значительные площади глинистых грунтов с малой влажностью, твердой консистенцией, легко размокают и обладают большой липкостью.

 

 

ПРОСАДОЧНЫЕ ЯВЛЕНИЯ В ЛЕССОВЫХ ГРУНТАХ

Лессовые породызанимают большие площади территории России, залегая на различных геоморфологических элементах земной поверх­ности. Сплошным покровом лессовые породы располагаются в цент­ральных и южных районах, на Западно-Сибирской низменности. Лессовые породы отсутствуют в поймах речных долин и на молодых террасах рек. Широкое распространение лессовые образования имеют на предгорных и горных равнинах (Предкавказье, склоны Северного Кавказа, Предалтайская равнина, склоны Алтая и др.).

Толщина лессовых отложений колеблется от нескольких до десят­ков метров, а в отдельных случаях даже более 100 м (Восточное Предкавказье). Наиболее распространенная толщина лессовых отло­жений 10—25 м, максимальная встречается, как на водоразделах, так и в понижениях рельефа.

Лессовые породы представлены суглинками, реже — супесями. Среди них различают лесс (первичное образование) и лессовидные суглинки (переотложенные первичные образования). Гранулометриче­ский состав их нередко бывает сходным, поэтому в строительном деле целесообразно пользоваться единым названием «лессовые грунты», подразделяя их по гранулометрическому составу на супеси, суглинки, глины. Для лессов типична однородность. Лессовидные суглинки обычно слоисты и могут содержать обломки различных пород.

Лессовые грунты бывают палевой, палево-желтой или желто-бурой окраски. Для них характерны следующие особенности: способность сохранять вертикальные откосы в сухом состоянии, быстро размокать в воде, высокая пылеватость (содержание фракции 0,05—0,005 мм более 50 % при небольшом количестве глинистых частиц), невысокая природная влажность (до 15—17 %); пористая структура (более 40 %) с сетью крупных и мелких пор, высокая карбонатность, засоление легко водорастворимыми солями.

Природная влажность лессовых грунтов связана, в основном, с климатическими особенностями районов. В областях недостаточного увлажнения влажность составляет не более 10—12 % (Восточное Пред­кавказье и др.). В более влажных районах она достигает 12—14 % и более.

Для лессовых толщ характерна анизотропность фильтрационных свойств. Водопроницаемость лессовых пород по вертикали нередко в 5—10 раз превышает значения водопроницаемости по горизонтали. При поступлении воды в лессовые толщи образуются скопления верховодок (или грунтовых вод) куполообразного залегания. Такая форма подземных вод в настоящее время свойственна многим участ­кам, где постоянно происходят утечки промышленно бытовых вод (Ростов-на-Дону, Таганрог и др.) Изменение влажности лессовых грунтов серьезно сказывается на сжимаемости, просадочности и сопротивлении сдвигу грунтов.

Среди лессовых пород по характеру влияния на них увлажнения различают: набухающие, непросадочные, просадочные. Набухающие лессовые породы встречаются редко. Обычно эти плотные и наиболее глинистые разновидности с содержанием в составе фракции менее 0,005 мм гидрофильных минералов типа монтморил­лонита. Величина набухания структурных образований достигает 1—3%, реже— 5—7%.

Непросадочные лессовые породы при замачивании и приложении нагрузок просадочных свойств не проявляют. Такие породы свойст­венны пониженным частям рельефа и наиболее северным районам распространения лессовых отложений. Непросадочными также явля­ются нижние части лессовых толщ и участки, ранее претерпевшие значительное обводнение.

Просадочность — явление, характерное для многих лессовых пород. На рис. 131 показан наиболее характерный случай геологического строения лессовой толщи, в верхней части которой залегают грунты, обладающие просадочными свойствами. Просадка связана с воздейст­вием воды на структуру пород с последующим ее разрушением и уплотнением под весом самой породы или при суммарном давлении собственного веса и веса объекта. Уплотнение пород приводит к опусканию поверхности земли в местах замачивания водой.

Рис. 131.

1- здание; 2- породы просадочные; 3 - то же непросадочные; 4-грунтовая вода; 5- участок, где появилась просадка.

Форма опускания зависит от особенностей источника замачивания. При точечных источниках (прорыв водопроводной сети, канализации и т. д.) образуются блюдцеобразные понижения. Инфильтрация воды через траншеи и каналы при­водит к продольным оседани­ям поверхности. Площадные источники замачивания, в том числе и при поднятии уровня подземных вод, при­водят к понижению поверх­ности на значительных территориях.

Вследствие опускания по­верхности земли здания и со­оружения претерпевают де­формации, характер и размер которых определяется вели­чинами просадок S, (рис. 133). Величина оседания поверхности (величина про­садки) может быть различной и колеблется от нескольких до десятков сантиметров, что зависит от особенностей замачивания толщи. Напри­мер, в Ростове-на-Дону просадка может составить 15—20 см, а в районе Терско-Кумской оросительной системы на Северном Кавказе —100— 150 см.

Рис. 133. Деформация здания (схема) на лессовых грунтах в результате просадки:1— здание; 2 — лессовый грунт; S — величина просадки

 

Структура лессовых грунтов по своей прочности неодинакова рис.134. В одних случаях просадка происходит в основном в пределах деформируемой зоны основания от давления фундамента или другого вида внешней нагрузки, а просадка от собственного веса грунта отсутствует или не превышает 5 см.. Такие породы относят к I типу по просадочности. Грунты II типа просадочности, когда просадка возникает от собственного веса грунта просадочной толщи (в основном нижней ее части) и ее величина превышает 5см.

Рис. 134. Соотношение мощности просадочных инепросадочных грунтов в лессовых толщах I и II типа: П- грунты просадочные; Н— то же. Непросадочные

Важное значение в проявлении просадочного процесса имеет струк­турная прочность лессовых грунтов. При слабых и легко водораство­римых структурных связях просадка возникает через несколько часов, что характерно для фунтов I типа. Структуры фунтов I типа обычно более прочные. Кроме длительного, в течение ряда дней, воздействия водой для их разрушения необходимо более высокое давление (собст­венный вес грунта и вес здания, стоящего на нем). Из этого следует, что просадочный процесс возникает лишь при некотором для данного грунта давлении. Это давление назвали начальным просадочным давлением (PSL). Для пород I типа оно составляет 0,13—0,2 МПа, для II типа —0,08—0,12 МПа. Значение начального просадочного давле­ния определяет деформируемые зоны в лессовой просадочной толще. В этих зонах происходит просадочное уплотнение пород. На рис. 135 показано, где образуются деформируемые зоны в породах I и II типа. В первом случае просадочная деформация возникает под фундаментом в зоне I Во втором случае, кроме зоны 1, просадка возникает еще в зоне 3, где она проявляется под действием собственного веса породы. В ряде случаев зона 2 вообще отсутствует и зона 1 сливается с зо­ной 3.

 

 

Рис. 135. Деформационные зоны в просадочных породах I и II типа: Ф — фундамент; 1 — верхняя деформируемая зона; 2 — переходная зона; 3 — нижняя деформиру­емая зона; П — породы просадочные; Н —то же, непросадочные

За количественную характеристику просадочности принимают ве­личину относительной просадочности грунта Еsl, которую опреде­ляют в лаборатории по отдельным образцам, взятым из лессовой толщи. Образцы отбирают через 1 м или из различных слоев породы с сохранением структуры и природной влажности. Величины Еsl полу­чают по результатам лабораторных компрессионных испытаний

Esl = h – h1 h0

где h— высота образца с природной влажностью при заданном давлении; h1 — высота образца после просадки в результате замачивания при том же давлении; —высота образца грунта при давлении, равном природному.

Начальное просадочное давление Рпр - минимальное давление, при котором проявляется просадочность в условиях полного водонасыщения грунта. При лабораторных исследованиях за Рпр принимают такое давление, при котором относительная просадочность равна 0.01

При значениях ESl более 0,01 породу относят к просадочной. По величине ESL отдельных образцов опреде­ляют общую величину просадки Sпр данной лессовой толщи.

В полевых условиях величину Snp определяют методом штампа, который размешают на глубине подошвы будущего фундамента и передают на него необходимое давление и замачивают породу. Такого типа определения дают наиболее точные результаты.

Тип грунтовых условий (I или II) устанавливают на основе лабо­раторных испытаний по расчетной величине Snp, но более точные результаты можно получить лишь в полевых условиях путем замачи­вания лессовых толщ в опытных котлованах и наблюдением за про­садкой по реперам

При определении величины просадочной деформации грунта не следует забывать об осадке. Под весом сооружения грунт несколько уплотняется, происходит осадка сооружения. Величина осадки в зна­чительной степени зависит от природной влажности грунта—чем больше влажность грунта, тем больше он сжимается и тем больше величина осадки. Просадка проявляется уже как дополнительное к осадке уплотнение. Таким образом , деформация грунта складывается из «осадки — просадки». Для конкретных условий эта величина обыч­но постоянная. Соотношение между осадкой и просадкой может меняться. В более сухих грунтах осадка будет уменьшаться, а просадка возрастать, и наоборот.

Строительство на лессовых просадочных грунтах. Всостоянии природной влажности и ненарушенной структуры лессовые грунты являются достаточно устойчивым основанием. Однако потенциальная возможность проявления просадки, что приводит к деформациям сооружений, требует осуществления различного рода мероприятий. Все мероприятия подразделяются на три группы:

1) водозащитные – отвод поверхностных вод, гидроизоляцию поверхности земли, устранению утечек воды из водопровода,

2) конструктивные - приспособление объекта к различным неравномерным осадкам, повышение жесткости стен, армирование зданий поясами, применение свайных, а так же уширенных фундаментов, передающих давление на грунт меньше чем Р. Маломощные просадочные грунты Н прорезаются глубокими фундаментами, в том числе свайными

3) устраняющие просадочные свойства пород-поверхностное уплотнение трамбовкой, замачиванием через скважины с последующим взрывом под водой.

 

ИНЖЕНЕРНО - ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА НЕСВЯЗНЫХ ГРУНТОВ.

Песчаные грунтысложены угловатыми и окатанными обломками минералов, размером от 2 до 0,05 мм. Основная масса песков состоит из кварца и полевых шпатов. В качестве примесей всегда присутствуют другие минералы — силикаты, глинистые и т. д. Пески на поверхности земли имеют широкое распространение, как на суше (речные и озерные пески), так и в морях (морские пески). Морские пески занимают большие площади, имеют многометровую мощность, чаще всего хоро­шо отсортированы по крупности частиц, нередко бывают мономинеральными, например, чисто кварцевыми. Речные пески (аллю­виальные) всегда локальны по площади распространения, маломощны, поли минеральны, не отсортированы, нередко имеют примесь глини­стых частици гумуса. Еще более разнообразны по своему залеганию и составу пролювиальные (предгорные) пески. Для них типично пересла­ивание песков с различной крупностью частиц. По форме залегания это прослои и линзы среди крупнообломочных грунтов.

Пески представляют собой массу частиц с механическими связями. Все дисперсные грунты состоят из частиц одной или, чаще всего нескольких фракций. Под фракциейпонимается группа частиц определенного размера, обладающих некоторыми достаточно постоянными общими физическими свойствами. Под гранулометрическим составом понимается количественное соотношение различных фракций в дисперсных породах, т.е. гранулометрический состав показывает, какого размера частицы и в каком количестве содержатся в той или иной породе. Его определение ведется ситовым методом или отмучиванием. Содержание фракций при этом выражается в % по отношению к массе высушенного образца. Гранулометрический состав изображается в виде графика, по которому можно судить об однородности породы по крупности частиц. По крупности частиц пески разделяют на гравелистые, крупно-, сред­не- и мелкозернистые, пылеватые. На свойства песков влияют не только крупность и минеральный состав частиц, но и однородность их грансостава, от которого зависит их плотность сжимаемость, водопроницаемость.

Пористость песков в рыхломсосто­янии около 47 %, а в плотном—до 37%- Чем мельче песок, тем выше пористость, тем меньше поры по размеру, отсюда и фильтрационная способность песков уменьшается с уменьшением размеров его частиц. Рыхлое сложение легко переходит в плотное при водонасыщении, вибрации и динамических воздействиях. Плотность песков оценивается по значению коэффици­ента пористости е: плотное сложение (е < 0,60), средней плотности и рыхлое (е > 0,75). В табл. 22 и 23 показаны нормативные характери­стики песков четвертичного возраста.