СТРУКТУРНЫЕ ОСНОВЫ СОКРАЩЕНИЯ МЫШЦ. ПОПЕРЕЧНОПОЛОСАТЫЕ МЫШЦЫ

ФИЗИОЛОГИЧЕСКИЕ СВОЙСТВА МЫЩЦ

Мышцы являются важнейшими исполнительными органа­ми — эффекторами. Как по морфологическим, так и по функ­циональным характеристикам мышцы разделяют на два типа — поперечнополосатые и гладкие. Поперечнополосатые мышцы, в свою очередь, принято подразделять на скелетные и сердечную. Поперечнополосатые мышцы формируют двига­тельные аппараты скелета, глазодвигательные, жевательные и другие двигательные системы у животных. Поперечнополоса­тые мышцы, за исключением сердечной мышцы, полностью контролируются ЦНС. Они лишены автоматизма, т. е. не спо­собны работать без сигналов, поступающих из ЦНС. Глад­кие мышцы животных участвуют в работе внутренних ор­ганов. Они в значительно меньшей мере контролируются ЦНС, обладают автоматизмом и собственной нервной сетью, располо­женной в мышечной стенке (интрамуральной сетью) и в значи­тельной степени обеспечивающей их самоуправление. В этой части главы наиболее подробно будут рассмотрены свойства по­перечнополосатых мышц скелета животных как наиболее изу­ченного объекта и в меньшей мере свойства гладких мышц. О морфологических и функциональных характеристиках сердеч­ной мышцы будет изложено в гл. 5.


Строение поперечнополосатых мышц на различных уровнях можно представить схематически (рис. 2.22). Мышцы состоят из отдельных цилиндрических многоядерных клеток или, как чаще всего их называют, волокон, которые заключены в общем соеди­нительнотканном футляре. Поперечнополосатые мышцы обычно начинаются от сухожилия или от другой соединительной ткани на

одной кости и заканчиваются

Перистое

Мышца Параллельное Сухожилие
/__ Саркомер
'ышечное волокно '^~~~2^линия Миофиб-рилла
Молекулы G-актина ZS--------- аявмвгаав» Т- F-актиновыи филамент
Миозиновые филаменты

в сухожилии или в соедини­тельной ткани на другой кос­ти. В некоторых мышцах на­правление всех волокон па­раллельно длинной оси мыш­цы — параллельно-волокнистый тип. В других мышцах они расположены косо, прикреп­ляясь с одной стороны к цент­ральному сухожильному тяжу, а с другой — к наружному сухожильному футляру. Такое строение напоминает на про­дольном срезе мышцы перо птицы — перистый или полу­перистый тип. Мышечные во­локна в мышце тесно приле­гают друг к другу, т. е. они работают параллельно друг другу. Диаметр волокон по­перечнополосатых мышц ва­рьирует от 5 до 100 мкм, а длина у крупных животных более 10 см. Необычные их размеры и строение объясня­ются тем, что мышечные во­локна возникают из отдель­ных клеток — миобластов, сли­вающихся в миотрубочки, ко­торые, в свою очередь, диффе­ренцируются с образованием многоядерных, окруженных общей мембраной мышечных волокон. Каждое мышечное волокно состоит из множест-

Молекула миозина

Рис. 2.22. Строение поперечнополосатых ва параллельно расположен-мышц на различных уровнях организации НЫХ субъединиц — миофибрилл,


 

Рис. 2.23. Схема ультраструкгурной органи­зации участка мышечного волокна поперечно­полосатой мышцы:

1 — поперечная Г-трубочка; 2 — устье Г-трубоч-ки; 3 — боковая цистерна саркоплазматического ретикулума; 4— наружная мембрана мышечного волокна; 5 — фенестрированная муфта сарко­плазматического ретикулума; 6— продольные эле­менты саркоплазматического ретикулума

включающих в себя повторяю­щиеся в продольном направле­нии блоки — саркомеры, отделен­ные друг от друга Z-пластинками. Саркомер миофибриллы представ­ляет собой функциональную еди­ницу поперечнополосатой мыш­цы. Миофибриллы отдельного мы­шечного волокна связаны таким образом, что расположение сар-комеров совпадает (см. рис. 2.22), и это создает картину попереч­ной «полосатости» под световым микроскопом. Отсюда и назва­ние этих мышц — «поперечнополосатые».

Чрезвычайно ценные данные о тонкой структуре поперечно­полосатых мышц были получены с использованием электронной микроскопии. На электронных снимках видно, что Z-пластинка содержит а-актин — один из белков, который обнаружен у всех клеток, обладающих подвижностью. В обоих направлениях от Z-пластинки тянутся многочисленные тонкие нити (филаменты), состоящие главным образом из белка актина. Они контактируют с толстыми нитями, состоящими из белка миозина. Миозиновые филаменты образуют наиболее плотную часть саркомера — Л-диск (в световом микроскопе он выглядит темной полосой). Более светлый участок в центре Л-диска называют Я-зоной. В середине Я-зоны находится Л/-линия, в области которой локализованы ферменты, играющие важную роль в энергетическом метаболиз­ме. По периметру каждой миофибриллы на уровне Z-пластинки идет окруженная мембраной поперечная трубочка (Г-трубочка) диаметром около 0,1 мкм (рис. 2.23). Она разветвляется таким об­разом, что соединяется с аналогичными трубочками, окружающи­ми соседние миофибриллы на том же самом уровне. Система раз­ветвленных трубочек в конечном счете достигает поверхности наружной мембраны мышечного волокна, где с ней соединяется, причем устье трубочки открывается во внеклеточное пространство в области Г-образного впячивания мембраны мышечного волок­на. В дополнение к системе Г-трубочек в мышцах есть еще одна система, получившая название саркоплазматического ретикулума. Она обволакивает подобно полой манжете отдельно каждую мио-фибриллу от одной Z-пластинки до другой (см. рис. 2.23). Сарко-



Головка

меромиозин'

^л^^флЩяЩ^Щя.


го перекрывания каждый миозиновый филамент окружен шестью актиновыми (тонкими) филаментами (рис. 2.24).

Актиновый филамент по своему строению напоминает две нитки бус, перекрученные в двойную спираль (рис. 2.24). Каж­дая бусинка — это мономерная молекула G-актина. Молекулы G-актина, полимеризуясь, образуют длинную двойную спираль /'-актина. Актиновые филаменты имеют длину 1 мкм и диаметр 8 нм и прикрепляются одним концом к компонентам, образую­щим Z-линию. В продольных бороздках актиновой спирали ле­жат нитевидные молекулы белка тропомиозина. К каждой моле­куле тропомиозина прикреплен комплекс молекул глобулярных белков, получивших название «тропонины». Тропониновые ком­плексы содержат выступы вдоль актинового филамента с интер­валом около 40 нм.

Миозиновый филамент (см. рис. 2.24) образует при полимери­зации мономеры длиной около 150 нм и диаметром 2нм. На од­ном конце миозиновых молекул образуется двойная глобулярная головка. Длинная тонкая часть молекулы состоит из двух пептид­ных цепей, закрученных относительно друг друга на всем протя­жении и подразделяющихся на шейку и хвост. Мономеры собира­ются в филамент так, что их головки, получившие название мос­тиков, выступают на поверхности филамента и располагаются вдоль его оси в виде двухнитчатой спирали. Расстояние между со­седними мостиками вдоль оси спирали около 14 нм, а угол их сме­щения вокруг филамента 120°.


 


Рис. 2.24. Схема ультраструктурной организации мио-фибрилл:

А — продольный и Б — поперечный срезы через миофиб-риллу; В — актиновый (тонкий) филамент; Г— схема мо­лекулы миозина; Д— схема расположения поперечных мостиков на толстом филаменте; /— светлый диск; А — темный диск; Z— пластинка; Н— средняя зона

плазматический ретикулум, окружающий каждый отдельный сар-комер, состоит из ограниченного мембраной объема, отделенного от внутриклеточной среды мышечного волокна (миоплазмы). Кон­цевые цистерны саркоплазматического ретикулума вступают в тес­ный контакт с Г-трубочкой и как бы сдавливают ее между собой, но их полости не соединяются (см. рис. 2.23). Мембрана мышечного волокна — плазмалемма сходна по своему строению с нервной мем­браной. Ее особенность состоит в том, что она дает регулярные впя-чивания (трубки диаметром 50 нм) приблизительно на уровне гра­ницы А- и /-дисков, куда открываются Г-трубочки.

Ультраструктура филаментов.На поперечном срезе /-дисков видны только актиновые филаменты, а на поперечном срезе Я-зоны — только миозиновые. В то же время на участке взаимно-