Физический размер матрицы

В целом, несмотря на стремительное завоевание КМОП-матрицами популярности среди профессиональной и студийной техники, вряд ли стоит надеяться на скорое исчезновение ПЗС-сенсоров из любительских фотокамер.

Совокупность показателей КМОП-сенсоров является причиной того, что в любительских камерах они чаще встречаются в технике начального уровня — с невысоким разрешением, простой оптикой и, разумеется, привлекательной для покупателя ценой.

Для увеличения чувствительности, как и в ПЗС-сенсорах с буферизацией строк, применяются микролинзы. Кроме того, непрерывно ведутся разработки по уменьшению размеров дополнительных компонентов.

Но при этом общее усложнение сенсора приводит к росту себестоимости и увеличению доли брака в производстве. Кроме того, сокращается и без того малая площадь светочувствительного элемента.

В то время как процесс изготовления ЭОП на основе ПЗС достаточно сложен и требует специализированного оборудования, технология производства КМОП-матриц широко распространена. Практически любой завод радиоэлектронных изделий может в кратчайшие сроки наладить выпуск ЭОП такого типа. Этим определяется невысокая стоимость КМОП-сенсоров.

В КМОП-матрицах преобразование фотонов в заряд происходит таким же, как и в ПЗС-матрицах, образом. Отличие заключается в том, что преобразование заряда в напряжение осуществляется прямо внутри элемента матрицы.

Разумеется, использование дренажных устройств усложняет конструкцию ЭОП, однако вред изображению, наносимый блюмингом, значительно выше. Кроме того, без дренажа невозможна реализация электронного затвора.

Для предотвращения блюминга используется так называемый электронный дренаж (drain), обеспечивающий отвод избыточных электронов. По методу реализации различают вертикальный и боковой дренаж — Vertical Overflow Drain (VOD), Lateral Overflow Drain (LOD).

Прочие виды помех

Если количество электронов, образованных падающими на поверхность светочувствительного элемента фотонами, превышает максимальную «емкость» пиксела, заряд начинает «растекаться» по соседним элементам. При этом на фотографии наблюдаются белые пятна правильной формы, размер которых зависит от степени «засветки». Данное явление в оптоэлектронике называется блюминг (от английского blooming — размывание).

Вертикальный дренаж осуществляется подачей потенциала на подложку ЭОП, причем его значение подбирается так, чтобы при достижении уровня переполнения «лишние» электроны стекали через подложку из потенциальной ямы. Побочным эффектом является уменьшение емкости потенциальной ямы и, как следствие, уменьшение динамического диапазона светочувствительного элемента. Кроме того, данная система неприменима в матрицах с обратной засветкой.

При боковом дренаже сток электронов осуществляется в специальные «канавки» (gates). В отличие от вертикального дренажа емкость светочувствительного элемента при этом не меняется, но зато уменьшается светочувствительная площадь пиксела. Впрочем, применение микролинз минимизирует данный негативный эффект.

Существует еще одна проблема, вызывающая появление отдельных пикселов-«паразитов», сильно отличающихся по цвету и яркости от окружающих точек. Они называются «залипшими» (stuck pixels) и возникают по причине того, что при «длинной» выдержке большой временной интервал в некоторых пикселах приводит к лавинообразному «срыву» электронов из канала n-типа в потенциальную яму. Если временной интервал, необходимый для такой «электронной лавины», перекрывает диапазон выдержек камеры, «залипшие» пикселы будут наблюдаться на каждом снимке.

Для удаления таких точек в большинстве современных камер используется специальное программное обеспечение. Его алгоритм сводится к поиску «залипших» пикселов и занесению их координат в служебную память фотоаппарата, в дальнейшем эти точки просто исключаются из процесса формирования изображения. При поиске «залипших» пикселов величина заряда каждого элемента матрицы, генерируемого при подаче питания на сенсор, сравнивается с эталонным значением, также хранящимся в служебной памяти камеры.

Еще одно неприятное явление связано с паразитными электронами, генерируемыми в глубине кремниевой подложки и не попадающими в потенциальную яму. В процессе переноса заряда от одного элемента матрицы к другому эти электроны «размазываются» (smear), искажая изображение. В матрицах с буферизацией строк этот эффект практически незаметен, а вот в полнокадровых сенсорах для его компенсации «глубина залегания» потенциальной ямы значительно увеличивается.

ПЗС или КМОП?

ПРИМЕЧАНИЕ

КМОП — аббревиатура, обозначающая технологию производства микросхем — «комплиментарных структур метал-оксид-полупроводник» (CMOS — complementary metal oxide semiconductor). Подавляющее большинство микроэлектронных компонентов производятся по данной технологии.

Для синхронизации работы, а также для передачи полученных сигналов используются адресные шины столбцов и строк матрицы. При этом возможно считывание всей матрицы, столбца либо строки и даже отдельного элемента. Более того, отпадает необходимость в регистрах сдвига и управляющих микросхемах. Значительно сокращается также и энергопотребление.

С момента появления КМОП-матрицы декларируются «наиболее перспективными ЭОП», однако ряд недостатков не позволяют этим устройствам полностью вытеснить ПЗС-сенсоры.

Во-первых, в каждом из элементов матрицы присутствуют преобразователь заряд-напряжение и компоненты, предназначенные для считывания напряжения. Как любые электронные устройства, эта «обвязка» при обработке сигнала добавляет к нему помехи, именуемые электронным шумом. Причем для каждого пиксела матрицы уровень электронного шума разный.

Второй минус КМОП-сенсоров вызван тем, что «обвязка» размещается вокруг пиксела, что приводит к малой площади светочувствительного элемента, даже по сравнению с ПЗС-матрицами с буферизацией строк. Следствием этого является низкая чувствительность ЭОП данного типа.

Для борьбы с электронным шумом применяется технология «активных пикселов». В матрицах, использующих эту технологию, напряжение, полученное после преобразования заряда, подается на вход усилителя, встроенного в каждый пиксел. Так снижается влияние электронного шума, подмешиваемого той частью «обвязки», которая отвечает за считывание сигнала.

Основного успеха сенсоры данного типа достигли в профессиональных фотоаппаратах и студийных камерах. В этой технике используются матрицы с большими габаритами, поэтому площадь светочувствительных элементов значительно больше размеров «обвязки» каждого пиксела. Благодаря этому достигается высокая чувствительность сенсора. А чтобы расширить динамический диапазон, применяется ряд мер по уменьшению уровня электронного шума.

Порой среди характеристик фотоаппарата выделяется физический размер ПЗС-матрицы по диагонали, указываемый в дюймах. Это напрямую связано с размерами оптической системы — чем больше размеры ПЗС-матрицы, тем крупнее должен быть кадр, формируемый объективом. Чтобы достичь этого, требуется увеличить размеры оптических элементов и фокусное расстояние. Если же ПЗС-матрица все-таки больше изображения, генерируемого объективом, то в создании кадра используются не все элементы ЭОП, периферийные области матрицы оказываются невостребованными. В профессиональных камерах, использующих стандартные объективы пленочных «зеркалок», чаще встречается обратная ситуация, когда создаваемая оптикой «картинка» меньше ЭОП. Последнее вызвано тем, что размер матрицы, как правило, меньше кадра 35-мм фотопленки. Подробнее об этом, а также о коэффициенте фокусного расстояния будет рассказано в главе, посвященной профессиональным фотоаппаратам.

Размер матрицы влияет также на ее чувствительность. Чем больше площадь каждого элемента, тем больше света попадает на него, соответственно возрастает чувствительность всего ЭОП. Особенно это заметно в профессиональных моделях, ЭОП которых традиционно отличается большими габаритами, а чувствительность достигает значений порядка ISO 25600 (!). И именно большие линейные размеры могут способствовать росту популярности КМОП-матриц.