Числа с плавающей запятой.

Диапазон представления дробных чисел.

Диапазон предоставления чисел

 

Диапазон представления знаковых n-разрядных чисел определяется в виде

-2 n-1£ Х £ 2n-1 -1

1 000...0 0 111...1

n-1 n-1

Для стандартного байтного формата (n=8) диапазон :

-128 £ Xцзн£127

Максимальное по модулю отрицательное число оказывается по модулю на единицу больше максимального положительного числа.

В связи с этим применение операции изменения знака к максимальному по модулю отрицательному числу приводит к переполнению формата, так как это число не представляется в области положительных чисел.

Формальным приемом изменения знака числа с соответственным преобразованием его из прямого кода в дополнительный или наоборот является инвертирование всех разрядов числа с добавлением единицы в младший разряд.

Для этой цели можно использовать следующее мнемоническое правило : младшие нули и крайняя правая единица прямого кода сохраняются и в дополнительном, а остальные разряды подлежат инвертированию.

Диапазон представления беззнаковых целых чисел в n- разрядном формате имеет вид :

0£Хцб.зн£2n-1

Для стандартного байтного формата (n=8) диапазон :

0 £ Xцзн£255

 

Для правильной n-разрядной двоичной дроби диапазон представления имеет вид

2-n £Aдрпр£1-2-n

Неправильная дробь содержит обязательную двоичную единицу в целой части. Для неправильной n-разрядной двоичной дроби диапазон представления имеет вид

1 £Aдрнепр£2-2-(n-1)

В формате представления чисел с плавающей запятой выделяются 3 части : знак числа (представляется крайне левым битом формата); мантисса числа (представляется в виде правильной или неправильной двоичной дроби); порядок числа (представляется в общем виде как целое число со знаком). Значение числа А с плавающей запятой представляется в виде :

Апз=(sign A)-1*Ma*SPa

где sign A - знак 0 - «+», 1 - «-»

SPa - порядок числа А, S - основание порядка.

Число с плавающей запятой называется нормализованным, если старшая цифра его мантиссы значащая (не 0), в противном случае число называется не нормализованным.

Основными особенностями представления чисел с плавающей запятой в современных ЭВМ являются :

1) Мантисса числа независимо от его знака представляется в прямом коде

2) Порядок числа представляется не в явном виде как знаковое целое, а со смещением в виде беззнакового целого числа.

Эта особенность облегчает обработку порядка при выполнении арифметических операций. Величина смещения равна либо весу старшего разряда порядка, либо на единицу меньше.Cмещенный порядок принято называть характеристикой числа.

3) В качестве основания порядка используется значение S=16 (ЕС ЭВМ) или S=2 (СМ ЭВМ, IEEE).

4) В подавляющем большинстве случаев принято использование нормализованных чисел с целью повышения их точности.

5) При использовании основания порядка, равного двум, нормализованное число содержит обязательную единицу в старшем разряде мантиссы.

Это позволяет не представлять его в явном виде в формате, что позволяет увеличить точность числа. Подобное сокрытие старшего разряда мантиссы называется скрытым разрядом (скрытой единицей).

6) В ЭВМ любого класса для представления чисел с плавающей запятой принято использовать несколько форматов (как правило, чтобы удовлетворить противоречивым требованиям повышения точности чисел и повышения скорости их обработки).

Эти форматы используют наименования :

а) короткий (одинарной точности) - 32 бита;

б) длинный (двойной точности) - 64 бита;

в) расширенный (расширенной точности) - 80 бит для РС и 128 бит для больших ЭВМ.

Переход от короткого формата к расширенному может сопровождаться либо расширением только разрядности мантиссы (ЕС ЭВМ) либо расширением разрядности как мантиссы так и порядка (IEEE).