Числовое представление Булевых функций

Разнообразие двоичных алгебр

 

В связи с тем, что любую сколь угодно сложную Булеву функцию можно представить в канонических формах, то есть записать ее с помощью операций отрицания, конъюнкции и дизъюнкции эта система Булевых операций обладает свойством функциональной полноты, т.е. образует так называемый базис. Естественно предположить, что система Булевых операций является не единственной, с помощью которой можно образовать некоторый базис.

В принципе любую из базовых функций можно отождествить соответствующей операцией и на основе совокупности этих операций построить двоичные алгебры, отличные от Булевой. К наиболее распространенным двоичным алгебрам относятся: алгебра Жигалкина (Å, &); алгебра Вебба (Пирса) (¯); алгебра Шеффера ( | ). В каждой из этих алгебр действуют собственные законы. Естественно существуют взаимно однозначные переходы от операций одного базиса к операциям другого.

 

 

Для любой Булевой функции можно предложить две числовые формы, основанные на перечислении десятичных эквивалентов наборов аргументов на которых функция принимает значение единицы (нуля).

f3(x)= (0,2,6,7) - от этой числовой формы легко перейти к КДНФ путем замены каждого из наборов в перечислении конституенты единицы.

_ _ _ _ _ _ _ _ _ _ _

y=x1x2x3Úx1x2x3Úx1x2x3Úx1x2x3=x1x3(x2Úx2)Úx1x2(x3Úx3)=x1x3Úx1x2 (ДНФ)

 

f3(x)= &(1,3,4,5)

_ _ _ _ _ _

y=(x1Úx2Úx3) (x1Úx2Úx3) (x1Úx2Úx3) (x1Úx2Úx3) (*)