Склады данных (DataWarehousing) и системы оперативной аналитической обработки данных
Intranet-приложения
Клиент-серверные приложения
Файл-серверные приложения
По всей видимости, организация информационных систем на основе использования выделенных файл-серверов все еще является наиболее распространенной в связи с наличием большого количества персональных компьютеров разного уровня развитости и сравнительной дешевизны связывания PC в локальные сети. Чем привлекает такая организация не очень опытных в области системного программирования разработчиков информационных систем? Скорее всего, тем, что при опоре на файл-серверные архитектуры сохраняется автономность прикладного (и большей части системного) программного обеспечения, работающего на каждой PC сети. Фактически, компоненты информационной системы, выполняемые на разных PC, взаимодействуют только за счет наличия общего хранилища файлов, которое хранится на файл-сервере. В классическом случае в каждой PC дублируются не только прикладные программы, но и средства управления базами данных. Файл-сервер представляет собой разделяемое всеми PC комплекса расширение дисковой памяти (рисунок 4.1)
Конечно, основным достоинством является простота организации. Проектировщики и разработчики информационной системы находятся в привычных и комфортных условиях IBM PC в среде MS-DOS, Windows или какого-либо облегченного варианта Windows NT. Имеются удобные и развитые средства разработки графического пользовательского интерфейса, простые в использовании средства разработки систем баз данных и/или СУБД. Но во многом эта простота является кажущейся.
Рис. 4.1. Классическое представление информационной системы в архитектуре "файл-сервер"
Во-первых, информационной системе предстоит работать с базой данных. Следовательно, эта база данных должна быть спроектирована. Почему-то часто разработчики файл-серверных приложений считают, что по причине простоты средств управления базами данных проблемой проектирования базы данных можно пренебречь. Конечно, это неправильно. База данных есть база данных. Чем качественнее она спроектирована, тем больше шансов впоследствии эффективно использовать информационную систему. Естественно, сложность проектирования базы данных определяется объективной сложностью моделируемой предметной области. Но, собственно, из чего должно следовать, что файл-серверные приложения пригодны только в простых предметных областях?
Во-вторых, необходимыми требованиями к базе данных информационной системы являются поддержание ее целостного состояния и гарантированная надежность хранения информации. Минимальными условиями, при соблюдении которых можно удовлетворить эти требования, являются:
· наличие транзакционного управления,
· хранение избыточных данных (например, с применением методов журнализации),
· возможность формулировать ограничения целостности и проверять их соблюдение.
В принципе, файл-серверная организация, как она показана на рисунке 2.1, не противоречит соблюдению отмеченных условий. В качестве примера системы, соблюдающей выполнение этих условий, но основанной на файл-серверной архитектуре, можно привести популярный в прошлом "сервер баз данных" Informix SE.
Длинное замечание:
Для сохранения четкости дальнейшего изложения нам необходимо несколько уточнить терминологию. Мы недаром написали "сервер баз данных" в кавычках применительно к СУБД Informix SE. При использовании этой системы копия программного обеспечения СУБД поддерживалась для каждого инициированного пользователем сеанса работы с СУБД. Грубо говоря, для каждого пользовательского процесса, взаимодействующего с базой данных создавался служебный процесс СУБД, который выполнялся на том же процессоре, что и пользовательский процесс (т.е. на стороне клиента). Каждый из этих служебных процессов вел себя фактически так, как если бы был единственным представителем СУБД. Вся синхронизация возможной параллельной работы с базой данных производилась на уровне файлов внешней памяти, содержащих базу данных. Условимся впредь называть такие СУБД не серверами баз данных, а системами управления базами данных, основанными на файл-серверной архитектуре (СУБД-ФС).
Под истинным сервером баз данных мы будем понимать программное образование, привязанное к соответствующей базе (базам) данных, существующее, вообще говоря, независимо от существования пользовательских (клиентских) процессов и выполняемое, вообще говоря (хотя и не обязательно) на выделенной аппаратуре (мы намеренно используем не очень конкретные термины "программное образование" и "выделенная аппаратура", потому что их конкретное воплощение различается в разных серверах баз данных).
Истинные серверы баз данных существенно сложнее по организации, чем СУБД-ФС, на зато обеспечивают более тонкое и эффективное управление базами данных. Везде далее в этом курсе при употреблении термина "сервер баз данных" мы будем иметь в виду истинные серверы баз данных.
Но с другой стороны, в большинстве персональных СУБД эти условия не выполняются даже с помощью грубых приемов. В лучшем случае удается частично восполнить недостатки на уровне прикладных программ.
В третьих, интерфейс развитых серверов баз данных основан на использовании высокоуровневого языка баз данных SQL, что позволяет использовать сетевой трафик между клиентом и сервером баз данных только в полезных целях (от клиента к серверу в основном пересылаются операторы языка SQL, от сервера к клиенту - результаты выполнения операторов). В файл-серверной организации клиент работает с удаленными файлами, что вызывает существенную перегрузку трафика (поскольку СУБД-ФС работает на стороне клиента, то для выборки полезных данных в общем случае необходимо просмотреть на стороне клиента весь соответствующий файл целиком).
В целом, в файл-серверной архитектуре мы имеем "толстого" клиента и очень "тонкий" сервер в том смысле, что почти вся работа выполняется на стороне клиента, а от сервера требуется только достаточная емкость дисковой памяти (рисунок 4.2).
Рис. 4.2. "Толстый" клиент и "тонкий" сервер в файл-серверной архитектуре
Краткие выводы. Простое, работающее с небольшими объемами информации и рассчитанное на применение в однопользовательском режиме, файл-серверное приложение можно спроектировать, разработать и отладить очень быстро. Очень часто для небольшой компании для ведения, например, кадрового учета достаточно иметь изолированную систему, работающую на отдельно стоящем PC. Конечно, и в этом случае требуется большая аккуратность конечных пользователей (или администраторов, наличие которых в этом случае сомнительно) для надежного хранения и поддержания целостного состояния данных. Однако, в уже ненамного более сложных случаях (например, при организации информационной системы поддержки проекта, выполняемого группой) файл-серверные архитектуры становятся недостаточными.
Под клиент-серверным приложением мы будем понимать информационную систему, основанную на использовании серверов баз данных . Общее представление информационной системы в архитектуре "клиент-сервер" показано на рисунке 4.3.
На стороне клиента выполняется код приложения, в который обязательно входят компоненты, поддерживающие интерфейс с конечным пользователем, производящие отчеты, выполняющие другие специфичные для приложения функции (пока нас не будет занимать, как строится код приложения).
Клиентская часть приложения взаимодействует с клиентской частью программного обеспечения управления базами данных, которая, фактически, является индивидуальным представителем СУБД для приложения.
(Здесь опять проявляются недостатки в терминологии. Обычно, когда компания объявляет о выпуске очередного сервера баз данных, то неявно понимается, что имеется и клиентская составляющая этого продукта. Сочетание "клиентская часть сервера баз данных" кажется несколько странным, но нам придется пользоваться именно этим термином.)
Рис. 4.3. Общее представление информационной системы в архитектуре "клиент-сервер"
Заметим, что интерфейс между клиентской частью приложения и клиентской частью сервера баз данных, как правило, основан на использовании языка SQL. Поэтому такие функции, как, например, предварительная обработка форм, предназначенных для запросов к базе данных, или формирование результирующих отчетов выполняются в коде приложения.
Наконец, клиентская часть сервера баз данных, используя средства сетевого доступа, обращается к серверу баз данных, передавая ему текст оператора языка SQL.
Здесь необходимо сделать еще два замечания.
Обычно компании, производящие развитые серверы баз данных, стремятся к тому, чтобы обеспечить возможность использования своих продуктов не только в стандартных на сегодняшний день TCP/IP-ориентированных сетях, но в сетях, основанных на других протоколах (например, SNA или IPX/SPX). Поэтому при организации сетевых взаимодействий между клиентской и серверной частями СУБД часто используются не стандартные средства высокого уровня (например, механизмы программных гнезд или вызовов удаленных процедур), а собственные функционально подобные средства, менее зависящие от особенностей сетевых транспортных протоколов.
Когда мы говорим об интерфейсе на основе языка SQL, нужно отдавать себе отчет в том, что несмотря на титанические усилия по стандартизации этого языка, нет такой реализации, в которой стандартные средства языка не были бы расширены. Необдуманное использование расширений языка приводит к полной зависимости приложения от конкретного производителя сервера баз данных.
Посмотрим теперь, что же происходит на стороне сервера баз данных. В продуктах практически всех компаний сервер получает от клиента текст оператора на языке SQL. Сервер производит компиляцию полученного оператора. Не будем здесь останавливаться на том, какой целевой язык используется конкретным компилятором; в разных реализациях применяются различные подходы Главное, что в любом случае на основе информации, содержащейся в таблицах-каталогах базы данных производится преобразование непроцедурного представления оператора в некоторую процедуру его выполнения. Далее (если компиляция завершилась успешно) происходит выполнение оператора. Мы снова не будем обсуждать технические детали, поскольку они различаются в реализациях. Рассмотрим возможные действия операторов SQL.
Оператор может относиться к классу операторов определения (или создания) объектов базы данных (точнее и правильнее было бы говорить про элементы схемы базы данных или про объекты метабазы данных). В частности, могут определяться домены, таблицы, ограничения целостности, триггеры, привилегии пользователей, хранимые процедуры. В любом случае, при выполнении оператора создания элемента схемы базы данных соответствующая информация помещается в таблицы-каталоги базы данных (в таблицы метабазы данных). Ограничения целостности обычно сохраняются в метабазе данных прямо в текстовом представлении. Для действий, определенных в триггерах, и хранимых процедур вырабатывается и сохраняется в таблицах-каталогах процедурный выполняемый код. Заметим, что ограничения целостности, триггеры и хранимые процедуры являются, в некотором смысле, представителями приложения в поддерживаемой сервером базе данных; они составляют основу серверной части приложения.
При выполнении операторов выборки данных на основе содержимого затрагиваемых запросом таблиц и, возможно, с использованием поддерживаемых в базе данных индексов формируется результирующий набор данных (мы намеренно не используем здесь термин "результирующая таблица", поскольку в зависимости от конкретного вида оператора результат может быть упорядоченным, а таблицы, т.е. отношения неупорядочены по определению). Серверная часть СУБД пересылает результат клиентской части, и окончательная обработка производится уже в клиентской части приложения.
При выполнении операторов модификации содержимого базы данных (INSERT, UPDATE, DELETE) проверяется, что не будут нарушены определенные к этому моменту ограничения целостности (те, которые относятся к классу немедленно проверяемых), после чего выполняется соответствующее действие (сопровождаемое модификацией всех соответствующих индексов и журнализацией изменений). Далее сервер проверяет, не затрагивает ли данное изменение условие срабатывания какого-либо триггера, и если такой триггер обнаруживается, выполняет процедуру его действия. Эта процедура может включать дополнительные операторы модификации базы данных, которые могут вызвать срабатывание других триггеров и т.д. Можно считать, что те действия, которые выполняются на сервере баз данных при проверке удовлетворенности ограничений целостности и при срабатывании триггеров, представляют собой действия серверной части приложения.
При выполнении операторов модификации схемы базы данных (добавления или удаления столбцов существующих таблиц, изменения типа данных существующего столбца существующей таблицы и т.д.) также могут срабатывать триггеры, т.е., другими словами, может выполняться серверная часть приложения.
Аналогично, триггеры могут срабатывать при уничтожении объектов схемы базы данных (доменов, таблиц, ограничений целостности и т.д.). Особый класс операторов языка SQL составляют операторы вызова ранее определенных и сохраненных в базе данных хранимых процедур. Если хранимая процедура определяется с помощью достаточно развитого языка, включающего и непроцедурные операторы SQL, и чисто процедурные конструкции (например, языка PL/SQL компании Oracle), то в такую процедуру можно поместить серьезную часть приложения, которое при выполнении оператора вызова процедуры будет выполняться на стороне сервера, а не на стороне клиента. При выполнении оператора завершения транзакции сервер должен проверить соблюдение всех, так называемых, отложенных ограничений целостности (к таким ограничениям относятся ограничения, накладываемые на содержимое таблицы базы целиком или на несколько таблиц одновременно; например, суммарная зарплата сотрудников отдела 999 не должна превышать 150 млн. руб.). Снова к проверке отложенных ограничений целостности можно относиться как к выполнению серверной части приложения. Как видно, в клиент-серверной организации клиенты могут являться достаточно "тонкими", а сервер должен быть "толстым" настолько, чтобы быть в состоянии удовлетворить потребности всех клиентов (рисунок 4.4).
Рис. 4.4. "Тонкий" клиент и "толстый" сервер в клиент-серверной архитектуре
С другой стороны, разработчики и пользователи информационных систем, основанных на архитектуре "клиент-сервер", часто бывают неудовлетворены постоянно существующими сетевыми накладными расходами, которые следуют из потребности обращаться от клиента к серверу с каждым очередным запросом. На практике распространена ситуация, когда для эффективной работы отдельной клиентской составляющей информационной системы в действительности требуется только небольшая часть общей базы данных. Это приводит к идее поддержки локального кэша общей базы данных на стороне каждого клиента.
Фактически, концепция локального кэширования базы данных является частным случаем концепции реплицированных (или, как иногда их называют в русскоязычной литературе, тиражированных) баз данных. Как и в общем случае, для поддержки локального кэша базы данных программное обеспечение рабочих станций должно содержать компонент управления базами данных - упрощенный вариант сервера баз данных, который, например, может не обеспечивать многопользовательский режим доступа. Отдельной проблемой является обеспечение согласованности (когерентности) кэшей и общей базы данных. Здесь возможны различные решения - от автоматической поддержки согласованности за счет средств базового программного обеспечения управления базами данных до полного перекладывания этой задачи на прикладной уровень. В любом случае, клиенты становятся более толстыми при том, что сервер тоньше не делается (рисунок 4.5).
Рис. 4.5. "Потолстевший" клиент и "толстый" сервер в клиент-серверной архитектуре с поддержкой локального кэша на стороне клиентов
Сформулируем некоторые предварительные выводы. Архитектура "клиент-сервер" на первый взгляд кажется гораздо более дорогой, чем архитектура "файл-сервер". Требуется более мощная аппаратура (по крайней мере, для сервера) и существенно более развитые средства управления базами данных. Однако, это верно лишь частично. Громадным преимуществом клиент-серверной архитектуры является ее масштабируемость и вообще способность к развитию.
При проектировании информационной системы, основанной на этой архитектуре, большее внимание следует обращать на грамотность общих решений. Технические средства пилотной версии могут быть минимальными (например, в качестве аппаратной основы сервера баз данных может использоваться одна из рабочих станций). После создания пилотной версии нужно провести дополнительную исследовательскую работу, чтобы выяснить узкие места системы. Только после этого необходимо принимать решение о выборе аппаратуры сервера, которая будет использоваться на практике.Увеличение масштабов информационной системы не порождает принципиальных проблем. Обычным решением является замена аппаратуры сервера (и, может быть, аппаратуры рабочих станций, если требуется переход к локальному кэшированию баз данных). В любом случае практически не затрагивается прикладная часть информационной системы. В идеале, которого, конечно же не бывает, информационная система продолжает нормально функционировать после смены аппаратуры.
Возникновение и внедрение в широкую практику высокоуровневых служб Всемирной Сети Сетей Internet (e-mail, ftp, telnet, Gopher, WWW и т.д.) естественным образом повлияли на технологию создания корпоративных информационных систем, породив направление, известное теперь под названием Intranet. По сути дела, информационная Intranet-система - это корпоративная система, в которой используются методы и средства Internet. Такая система может быть локальной, изолированной от остального мира Internet, или опираться на виртуальную корпоративную подсеть Internet. В последнем случае особенно важны средства защиты информации от несанкционированного доступа. Возможности и проблемы безопасных информационных Intranet-систем мы рассмотрим в пятой части курса.
Хотя в общем случае в Intranet-системе могут использоваться все возможные службы Internet, наибольшее внимание привлекает гипермедийная служба WWW (World Wide Web - Всемирная Паутина). Видимо, для этого имеются две основные причины. Во-первых, с использованием языка гипермедийной разметки документов HTML можно сравнительно просто разработать удобную для использования информационную структуру, которая в дальнейшем будет обслуживаться одним из готовых Web-серверов. Во-вторых, наличие нескольких готовых к использованию клиентских частей - браузеров, или "обходчиков" избавляет от необходимости создавать собственные интерфейсы с пользователями, предоставляя им удобные и развитые механизмы доступа к информации. В ряде случаев такая организация корпоративной информационной системы (рисунок 4.6) оказывается достаточной для удовлетворения потребностей компании.
Рис. 4.6. Простая организация Intranet-системы с использованием средств WWW
Однако, при всех своих преимуществах (простота организации, удобство использования, стандартность интерфейсов и т.д.) эта схема обладает сильными ограничениями. Прежде всего, как видно из рисунка 2.6, в информационной системе отсутствует прикладная обработка данных. Все, что может пользователь, это только просмотреть информацию, поддерживаемую Web-сервером. Далее, гипертекстовые структуры трудно модифицируются. Для того, чтобы изменить наполнение Web-сервера, необходимо приостановить работу системы, внести изменения в HTML-описания и только затем продолжить нормальное функционирование. Наконец, далеко не всегда достаточен поиск информации в стиле просмотра гипертекста. Базы данных и соответствующие средства выборки данных по-прежнему часто необходимы.
На самом деле, все перечисленные трудности могут быть разрешены с использованием более развитых механизмов Web-технологии. Эти механизмы непрерывно совершенствуются, что одновременно и хорошо и плохо. Хорошо, потому что появляются новые возможности. Плохо, потому что отсутствует стандартизация.
Что касается логики приложения, то при применении Web-технологии существует возможность ее реализации на стороне Web-сервера. Для этого могут использоваться два подхода - CGI (Common Gateway Interface) и API (Application Programming Interface). Оба подхода основываются на наличии в языке HTML специальных конструкций, информирующих клиента-браузера, что ему следует послать Web-серверу специальное сообщение, при получении которого сервер должен вызвать соответствующую внешнюю процедуру, получить ее результаты и вернуть их клиенту в стандартном формате HTTP (рисунок 4.7).
Рис. 4.7. Вызов внешней процедуры Web-сервера
Аналогичная техника широко используется для обеспечения унифицированного доступа к базам данных в Intranet-системах. Язык HTML позволяет вставлять в гипертекстовые документы формы. Когда браузер натыкается на форму, он предлагает пользователю заполнить ее, а затем посылает серверу сообщение, содержащее введенные параметры. Как правило, к форме приписывается некоторая внешняя процедура сервера. При получении сообщения от клиента сервер вызывает эту внешнюю процедуру с передачей параметров пользователя. Понятно, что такая внешняя процедура может, в частности, играть роль шлюза между Web-сервером и сервером баз данных. В этом случае параметры должны специфицировать запрос пользователя к базе данных. В результате получается конфигурация информационной системы, схематически изображенная на рисунке 4.8.
Рис. 4.8. Доступ к базе данных в Intranet-системе
На принципах использования внешних процедур основывается также возможность модификации документов, поддерживаемых Web-сервером, а также создание временных "виртуальных" HTML-страниц.
Даже начальное введение в Intranet было бы неполным, если не упомянуть про возможности языка Java. Java - это интерпретируемый объектно-ориентированный язык программирования, созданный на основе языка Си++ с удалением из него таких "опасных" средств как адресная арифметика. Мобильные коды (апплеты), полученные в результате компиляции Java-программы, могут быть привязаны в HTML-документу. В этом случае они поступают на сторону клиента вместе с документом и выполняются либо автоматически, либо по явному указанию. Апплет может быть, в частности, специализирован как шлюз к серверу баз данных (или к какому-либо другому серверу). При применении подобной техники доступа к базам данных схема организации Intranet-системы становится такой как на рисунке 4.9.
Рис.4.9. Доступ к базе данных на стороне клиента Intranet-системы
На наш взгляд, Intranet является удобным и мощным средством разработки и использования информационных систем. Как мы уже отмечали, единственным относительным недостатком подхода можно считать постоянное изменение механизмов и естественное отсутствие стандартов. С другой стороны, если информационная система будет создана с использованием текущего уровня технологии и окажется удовлетворяющей потребностям корпорации, то никто не будет обязан что-либо менять в системе по причине появления более совершенных механизмов.
До сих пор мы рассматривали способы и возможные архитектуры информационных систем, предназначенных для оперативной обработки данных, т.е. для получения текущей информации, позволяющей решать повседневные проблемы корпорации. Однако у аналитических отделов корпорации и у высшего звена управляющего состава имеются и другие задачи: проанализировав поведение корпорации на рынке с учетом сопутствующих внешних факторов и спрогнозировав хотя бы ближайшее будущее, выработать тактику, а возможно, и стратегию корпорации. Понятно, что для решения таких задач требуются данные и прикладные программы, отличные от тех, которые используются в оперативных информационных системах. В последние несколько лет все более популярным становится подход, основанный на концепциях склада данных и системы оперативной аналитической обработки данных. Возможно, в российских условиях трудно производить долговременные прогнозы бизнес-деятельности (слишком изменчивы внешние факторы), но анализ прошлого и краткосрочные прогнозы будущего могут оказаться очень полезными.
Прежде чем перейти к обсуждению технических аспектов, коротко обсудим проблемы терминологии. Поскольку термины, связанные со складами данных не так давно появились и на английском языке, и смысл их постоянно уточняется, трудно найти правильные русскоязычные эквиваленты. На сегодняшний день "datawarehouse" разными авторами переводится на русский язык как "хранилище данных", "информационное хранилище", "склад данных". Поскольку термин "хранилище" явно перегружен (он соответствует и английским терминам "storage" и "repository"), в этом курсе мы будем использовать термин "склад данных". Еще хуже дела обстоят с термином "data mart". В четвертом номере журнала "СУБД" за 1996 г. в напечатанных подряд двух статьях авторы переводят этот термин как "витрина данных" и "секция данных" соответственно. Однако в Оксфордском толковом словаре единственным подходящем по смыслу толкованием смысла слова "mart" является "market place". Чтобы не умножать число требуемых сущностей мы будем использовать термин "рынок данных" (обсуждение этого понятия отложим до пятой части курса). Конечно, постепенно терминология будет согласована, но это произойдет только тогда, когда склады данных будут активно использоваться в России.
В этом разделе мы не будем рассматривать возможные технологические приемы реализации складов данных, а обсудим соответствующие вопросы на концептуальном уровне. Начнем с того, что главным образом различает оперативные и аналитические информационные приложения с точки зрения обеспечения требуемых данных. Замечание: речь идет о так называемых OLAP-системах (от On-Line Analitical Processing), т.е. аналитических системах, помогающих принимать бизнес-решения за счет динамически производимых анализа, моделирования и/или прогнозирования данных.
Основным источником информации, поступающей в оперативную базу данных является деятельность корпорации. Для проведения анализа данных требуется привлечение внешних источников информации (например, статистических отчетов). Тем самым, склад данных должен включать как внутренние корпоративные данные, так и внешние данные, характеризующие рынок в целом.
Если для оперативной обработки, как правило, требуются свежие данные (обычно в оперативных базах данных информация сохраняется не более нескольких месяцев), то в складе данных нужно поддерживать хранение информации о деятельности корпорации и состоянии рынка на протяжении нескольких лет (для проведения достоверных анализа и прогнозирования). Как следствие, аналитические базы данных имеют объем как минимум на порядок больший, чем оперативные. Во многих достаточно крупных корпорациях одновременно существуют несколько оперативных информационных систем с собственными базами данных (как мы уже отмечали в этом курсе, это не очень хорошо, но часто неизбежно по историческим причинам). Оперативные базы данных могут содержать семантически эквивалентную информацию, представленную в разных форматах, с разным указанием времени ее поступления, иногда даже противоречивую (например, из-за ошибок ввода данных). Склад данных корпорации должен содержать единообразно представленные данные из всех оперативных баз данных. Эта информация должна максимально полно соответствовать текущему содержанию оперативных баз данных и быть согласованной. Отсюда следует необходимость наличия компонента склада данных, извлекающего информацию из оперативных баз данных и "очищающего" эту информацию. Оперативные информационные системы проектируются и разрабатываются в расчете на решение конкретных задач. Обычно набор запросов к оперативной базе данных становится известным уже на этапе проектирования системы. Информация из базы данных выбирается часто и небольшими порциями. Поэтому при проектировании оперативной базы данных можно и нужно учитывать этот заранее известный набор запросов (с известными оговорками в связи с возможными переделками информационной системы). Набор запросов к аналитической базе данных предсказать невозможно. Склады данных для того и существуют, чтобы отвечать на неожиданные (ad hoc) запросы аналитиков. Можно рассчитывать только на то, что запросы будут поступать не слишком часто и затрагивать большие объемы информации. Размеры аналитической базы данных стимулируют использование запросов с агрегатами (сумма, минимальное, максимальное, среднее значение и т.д.).
Оперативные базы данных по своей природе являются сильно изменчивыми. Это учитывается в используемых СУБД. В частности, распространенным механизмом индексации являются B-деревья, модификация которых выполняется достаточно быстро, а строки в таблицах хранятся неупорядоченно. Аналитические базы данных меняются только тогда, когда в них загружается оперативная или внешняя информация. В результате оказывается разумным использовать другие, более быстрые при выполнении операций массовой выборки методы индексации, поддерживать упорядоченность информационных массивов, сохранять заранее вычисленные значения агрегатных функций и т.д.
Если для оперативных информационных систем обычно хватает защиты информации на уровне таблиц (по правилам SQL-ориентированных баз данных), то информация аналитических баз данных настолько критична для корпорации, что для ее защиты требуются более тонкие приемы (например, при использовании реляционных баз данных установка индивидуальных привилегий доступа для индивидуальных строк и/или столбцов таблицы).
С учетом приведенных замечаний общая архитектура склада данных и системы аналитической обработки данных может выглядеть так, как показано на рисунке 4.10.
Рис. 4.10. Схематическое представление архитектуры аналитической информационной системы
В 1993 г. основоположник реляционного подхода к организации баз данных Эдвар Кодд, исходя из потребностей систем динамической аналитической обработки данных, сформулировал 12 основных требований к системам, поддерживающим аналитические базы данных. Мы приведем изложение этих требований, чтобы представить точку зрения проектировщика и разработчика системы аналитической обработки данных.
Многомерное концептуальное представление данных. Это требование возникает по той причине, что бизнес-пользователь естественно представляет историю и деятельность своей корпорации многомерными (например, одно измерение - время, другое - заказчики, третье - производимая продукция и т.д.). OLAP-модели должны поддерживать это представление и, естественно, оно должно хотя бы в какой-то мере опираться на возможности аналитической базы данных.
Прозрачность. Для бизнес-пользователя не должно быть существенно, где конкретно расположены средства динамического анализа данных. При разработке OLAP-систем следует придерживаться подхода открытых систем, что позволит размещать средства анализа в любом узле корпоративной сети.
Доступность. Логическая схема, с которой работает OLAP-система, должна отображаться в схемы разнородных физических хранилищ данных. При доступе к данным должно поддерживаться их единое и согласованное представление.
Согласованная эффективность производства отчетов. Эта эффективность не должна деградировать при увеличении числа измерений.
Архитектура "клиент-сервер". Серверный компонент OLAP-системы должен быть достаточно развитым, чтобы разнообразные клиенты могли подключаться к нему с минимальными усилиями и затратами на дополнительное "интегрирующее" программирование.
Родовая многомерность. Структурные и операционные возможности работы с каждым измерением данных должны быть эквивалентны. Для всех измерений должна существовать только одна логическая структура. Любая функция, применимая к одному измерению, должна быть применима к любому другому измерению.
Управление динамическими разреженными матрицами. Сервер OLAP-системы должен уметь эффективно хранить и обрабатывать разреженные матрицы. Физические методы доступа должны быть разнообразны, включая прямое вычисление, B-деревья, хэширование или комбинации этих методов.
Поддержка многопользовательского режима. OLAP-система должна поддерживать многопользовательский доступ к данным (по выборке и изменению), обеспечивая целостность и безопасность данных.
Неограниченные операции между измерениями. При выполнении многомерного анализа данных все измерения создаются и обрабатываются единообразно. OLAP-система должна быть в состоянии выполнять соответствующие вычисления между измерениями.
Интуитивное манипулирование данными. Манипуляции, подобные смене пути анализа или уровня детализации, должны выполняться с помощью прямого воздействия на элементы OLAP-модели без потребности использовать меню или другие вспомогательные средства.
Гибкая система отчетов. Бизнес-пользователь должен иметь возможность манипулировать данными, анализировать и/или синтезировать, а также просматривать их таким образом, как ему захочется.
Неограниченное число измерений и уровней агрегации. OLAP-сервер должен поддерживать не менее 15 измерений для каждой аналитической модели. Для каждого измерения должно допускаться неограниченное число определяемых пользователями агрегатов.
Основным выводом из материала этого раздела является то, что подход складов данных еще слишком молод, чтобы вокруг него сложился круг общепринятых понятий, терминов, технологических приемов. Тем не менее, он кажется настолько важным и перспективным, что многие компании (в том числе и ведущие производители СУБД) ведут активную работу, чтобы быть в авангарде этого направления.