Ортонормированный базис евклидова пространства.

Азн. 13.8.Базіс (2)n-мерного евклидового пространства называется ортонормированным, когда он ортогональный и все его векторы нормированные, то есть .

Тэарэма 13.9.Базис (2) евклидового пространства εn является ортонормированным тогда и только тогда, когда ортогональное достояние произвольных векторов , которые в этом базисе имеют координаты , грядет равный: (3). Доказ:Если - ортонормированный, тогда по 14.2 . Пусть правдиво (3). Тогда поскольку в базисе (2) мои координаты (1,0,0,...,0) получаем что: .

Откуда =1. Аналогично . Когда з (3)следует, что , то (2) – ортонормированный базис .■

Тэарэма 13.10.В каждой конечномерном евклидовом пространстве существует ортонормированный базис.

Доказ: В евклидовом пространстве εn существует базис . Идея доказательства в том, чтобы построить постепенно посредством этого базиса ортогональный базис Возьмем . Очевидно, что . Будем искать в виде = ÎR. Из условия ортогональности следует, что 0=( )=( )= . Но , последнее равенство эквивалентно тому, что . Таким образом, нашли такой, что ( )=0. Заметим, что векторы получили из векторов посредством элементарных преобразований. По 14.5 ранги систем векторов і равные, то . Когда построили систему ненулевых попарно ортогональных векторов

і < , тогда вектор будем искать в виде: . Рассмотрим ( )=( . Условие попарной взаимоортогональности векторов , эквивалентная тому, что 0=( )+ , поскольку , последнее равенство эквивалентно тому, что Таким образом, получаем систему попарно ортогональных векторов . Остается заметить, что последняя система получается из системы посредством элементарных преобразований, значиться их ранги равные , і . Таким путям мы получим систему попарно ортогональных векторов , ранг какой равный n, из чего следует, что эти векторы образовывают ортогональный базис пространства . Исходя из базиса , рассмотрим векторы . То . Па 12.9 , значит векторы образовывают ортонормированный базис.■

Св-во 13.11. Когда - ортонормированный базис εn, , то . Доказ: . Из условия ортонормируемости следует, что .■

Св-во 13.12.Когда - ортонормированный базис εn, векторы имеют в этом базисе столбцы координат X и Y соответственно, тогда . Доказ. , что по 14.4 ровно . ■