Параллельность плоскостей

 

Рассмотрим случай взаимной параллельности плоскостей. Если плоскости параллельны, то всегда в каждой из них можно построить по две пересекающиеся между собой прямые линии так, чтобы прямые одной плоскости были соответственно параллельны двум прямым другой плоскости (рис. 3.17,а).

 

Рис. 3.17

 

Это служит основным признаком для определения, параллельны плоскости между собой или не параллельны. Такими прямыми могут служить, например, следы обеих плоскостей: если два пересекающихся между собой следа одной плоскости параллельны одноименным с ними следам другой плоскости, то обе плоскости параллельны между собой (3.17, б, где Р1||Q1, P2||Q2).

На рис. 3.18 показано построение плоскости, параллельной заданной плоскости Р.

В первом случае (рис. 3.18,а) искомая плоскость задана двумя пересекающимися прямыми, проходящими через точку А и являющимися главными линиями плоскости – горизонталью и фронталью. На рис. 3.18 б показано построение следов искомой плоскости Т, проходящей через заданную точку А.

Решение начато с построения горизонтали искомой плоскости и её фронтального следа N, через который проведен фронтальный лед плоскости Т(Т12). Через точку схода следов Тх прошел горизонтальный след искомой плоскости Т1||Р1.

 

Рис. 3.18