Механічні коливаня

До механічних коливань відносяться вібрація, шум, інфразвук, ультразвук, гіперзвук.

Загальною властивістю цих фізичних процесів є те, що вони пов’язані з перенесенням енергії. За певної величини та частоти ця енергія може справляти несприятливу дію на людину: викликати різні захворювання, створювати додаткові небезпеки. Тому необхідно вивчити властивості цих небезпечних явищ, вміти вимірювати параметри коливань і знати методи захисту від них.

Вібрація це коливання твердих тіл, частин апаратів, машин, устаткування, споруд, що сприймаються організмом людини як струс.

Причиною вібрації є неурівноважені силові дії. Вібрація знаходить корисне застосування у медицині (вібраційний масаж) та у техніці (вібратори). Однак тривалий вплив вібрації на людину є небезпечним. Вібрація при певних умовах є небезпечною для машин та механізмів, тому що може викликати їх руйнування.

Часто вібрації супроводжуються почутим шумом.

Вібрація впливає на:

· центральну нервову систему

· шлунково-кишковий тракт

· вестибулярний апарат

· викликає запаморочення, оніміння кінцівок

· захворювання суглобів

Тривалий вплив вібрації викликає фахове захворювання – вібра­ційну хворобу.

Розрізняють загальну і локальну (місцеву) вібрації. Локальна вібрація зумов­лена коливаннями інструмента й устаткування, що передаються до окремих частин тіла.

Загальна вібрація викликає струс всього організму, місцева впливає на окремі частини тіла. Інколи працюючий може одночасно піддаватися загальній та місцевій вібрації (комбінована вібрація). Вібрація порушує діяльність серцево-судинної та нервової систем, викликає вібраційну хворобу. Особливо небезпечна вібрація на резонансних та навколо резонансних частотах (6-9 Гц), оскільки вона збігається з власною частотою коливань внутрішніх органів людини. В результаті цього може виникнути резонанс, це призводить до переміщень і механічних ушкоджень внутрішніх ор­ганів. Резонансна частота серця, живота і грудної клітки — 5 Гц, голови — 20 Гц, центральної нервової системи — 250 Гц. Частоти сидячих людей становлять від 3 до 8 Гц.

Основними параметрами, що характеризують вібрацію, є: час­тота/(Гц); амп­лі­туда зсуву А (м) (розмір найбільшого відхилення точки, що коливається, від положення рівноваги); коливальна швид­кість v (м/с); коливальне прискорення а (м/с2).

У виробничих умовах припустимі рівні шуму і вібрації регламен­туються відповідними нормативними документами.

Зниження впливу шуму і вібрації на організм людини досягається такими методами:

• зменшенням шуму і вібрації у джерелах їхнього утворення;

• ізоляцією джерел шуму і вібрації засобами звуко- і віброізоляції;

• звуко- і вібропоглинання;

• архітектурно-планувальними рішеннями, що передбачають раціо­нальне розміщення технологічного устаткування, машин і механізмів;

• акустичним опрацюванням помешкань; застосуванням засо­бів індивіду­аль­ного захисту.

Шум. Будь-який небажаний звук називають шумом. Шум шкідливий для здоров’я, зменшує працездатність, підвищує рівень небезпеки. Тому необхідно передбачати заходи захисту від шуму. А для цього потрібно володіти відповідними знаннями.

Як правило, шум нас дратує: заважає працювати, відпочивати, думати. Але шум може впливати і позитивно. Такий вплив на люди­ну чинить, наприклад, шелест листя дерев, помірний стукіт дощо­вих крапель, рокіт морського прибою. Позитивний вплив спокійної приємної музики відомий з давніх часів. Тому різноманітні оздоровчі процедури супроводжуються спокійною симфонічною або блюзовою музикою.

Нерідко шум несе важливу інформацію. Автомобіліст уважно прислухається до звуків, які видає мотор, шасі, інші частини автомо­біля, що рухається, бо будь-який сторонній шум може попередити аварію. Також за допомогою шуму, спричиненого рухом кораблів та підводних човнів, їх виявляють і пеленгують. Шум відіграє велику роль в акустиці, радіотехніці, радіоастрономії і навіть медицині.

Що таке шум і як він впливає на організм людини?

Шум — це сукупність звуків різноманітної частоти та інтенсив­ності, що виникають у результаті коливального руху частинок у пруж­них середовищах (твердих, рідких, газоподібних).

Шумове забруднення навколишнього середовища увесь час зро­стає. Особливо це стосується великих міст. Опитування жителів міст довело, що шум турбує більше 50% опитаних. Причому в останні десятиліття рівень шуму зріс у 10—15 разів.

Шум — один з видів звуку, який називають "небажаним" зву­ком. Як відомо з фізики, процес поширення коливального руху в середовищі називається звуковою хвилею, а область середовища, в якій поширюються звукові хвилі — звуковим полем. Розрізняють такі види шуму:

· ударний (штампування, кування);

· механічний (тертя, биття);

· аеродинамічний (в апаратах і трубопроводах при великих швид­костях руху повітря).

Фізичні характеристики шуму. Шум - це механічні коливання, що поширюються у твердому, рідкому та газоподібному середовищі. Частки середовища при цьому коливаються відносно положення рівноваги. Звук поширюється у повітрі зі швидкістю 344 м/с.

Основними фізичними характеристиками звуку є: частота/(Гц), звуковий тиск Р(Па), інтенсивність або сила звуку І (Вт/м2), звуко­ва потужність w (Вт). Швидкість поширення звукових хвиль в атмо­сфері при 20 °С становить 344 м/с. Органи слуху людини сприймають звукові коливання в інтервалі час­тот від 16 до 20 000 Гц. Коливання з частотою нижче 16 Гц (інфразвуки) і з частотою вище 20 000 Гц (ультразвуки) не сприймаються органами слуху людини.

Слуховий апарат людини найбільш чутливий до звуків високої частоти. Тому для оцінки шуму необхідно знати його частоту, яка вимірюється в герцах (Гц), тобто числом коливань на секунду. Вухо людини сприймає звукові коливання у межах 16¼16000 Гц. Нижче 16 Гц та вище 16000 Гц знаходяться відповідно області нечутних людиною інфразвуків та ультразвуків. Залежність рівнів від частоти називається спектром шуму. Спектри шуму (як і вібрації) бувають дискретними, суцільними та змішаними. У суцільних спектрів інтервали між частотними складовими безкінечно малі.

Мінімальна інтенсивність звуку, яку людина відчуває, називаєть­ся порогом чутливості.

У різних людей він різний, і тому умовно за поріг чутливості беруть звуковий тиск, який дорівнює 2×10-5 Н/м2 (ньютон на метр квадратний) при стандартній частоті 1000 Гц. При цій частоті поріг чутливості I0 = 10-12 Вт/м2, а відповідний йому тиск Р0 = 2×10-5 Па. Максимальна інтенсивність звуку, при якій вухо починає відчувати болючі відчуття, називається порогом болісного відчуття, дорівнює 102 Вт/м2, а відповідний їй звуковий тиск Р = 2×102 Па.

Зміни інтенсивності звуку і звукового тиску, які чує людина, ве­личезні і становлять відповідно 1014 і 107 разів, тому оперувати таки­ми великими числами незручно. Для оцінки шуму прийнято вимі­рювати його інтенсивність і звуковий тиск не абсолютними фізич­ними величинами, а логарифмами відношень цих величин до умов­ного нульового рівня, що відповідає порогові чутливості стандарт­ного тону частотою 1000 Гц. Ці логарифми відношень називають рівнями інтенсивності і звукового тиску і виражають в белах (Б). Одиниця виміру "бел" названа на честь винахідника телефону А. Белла (1847—1922 pp.). Оскільки орган слуху людини спромож­ний розрізняти зміни рівня інтенсивності звуку на 0,1 Б, то для практичного використання зручнішою є одиниця в 10 разів менша — децибел (дБ).

Треба пам'ятати, що бел – це логарифм відношення двох од­нойменних фізичних величин, і тоді не буде виникати помилок при порівнянні різноманітних звуків за їх інтенсивністю (рівнем). Наприклад, якщо тихий шелест листя оцінюється в 1 дБ, а голос­на розмова в 6,5 дБ, то звідси не випливає, що промова перевищує за гучністю шелест листя у 6,5 разів. Відповідно до Бела одер­жуємо, що промова "голосніша" за шелест листя у 316 000 разів (1065/10' = 105-5 = 316000). Останнє є наочною ілюстрацією закону Вебера-Фехнера.

Використання логарифмічної шкали для вимірювання шуму до­зволяє вкладати великий діапазон значень /в порівняно невеликий інтервал розмірів від 0 до 140 дБ.

Зменшення рівня шуму поліпшує самопочуття людини і підви­щує продуктивність праці. З шумом необхідно боротися як на вироб­ництві, так і в побуті. Уміння дотримуватися тиші — показник куль­тури людини і ії доброзичливого ставлення до оточуючих. Тиша потрібна людям так само, як сонце і свіже повітря.

На практиці, для боротьби з шумом використовуються октавні смуги, тобто f2/f1 =2. Використовується такий ряд середньо-геометричних октавних смуг: 63, 125, 250, 500, 2000, 4000, 8000 Гц. Спектри показуються у вигляді таблиць або графіків.

Методи боротьби з шумом.Завданнями акустичного розрахунку є:

1. визначення рівня звукового тиску в розрахунковій точці, коли відоме джерело шуму та його шумові характеристики;

2. визначення величини зменшення шуму.

3. розробка заходів із зменшення шуму до допустимої величини.

Для зменшення шуму можуть бути застосовані наступні методи:

1. зменшення шуму в джерелі;

2. зміна спрямованості випромінювання;

3. раціональне планування підприємств та цехів, акустична обробка приміщень;

4. зменшення шуму на шляху його поширення;

5. засоби індивідуального захисту від шуму.

Вимірювання шуму. Вимірювання шуму виконують з метою визначення рівнів звукових тисків на робочих місцях та відповідності їх санітарним нормам, а також для розробки та оцінки ефективності різних заходів з глушіння шуму.

Основним приладом для вимірювання шуму є шумомір. У шумомірі звук, що сприймається мікрофоном, перетворюється у електричні коливання, які підсилюються, потім проходять через фільтри корекції та випрямляч і реєструються приладом зі стрілкою.

Діапазон вимірюваних сумарних рівнів шуму звичайно складає 30-130 дБ за частотних меж, що дорівнюють 5–8000 Гц.

Шумоміри мають перемикач, що дозволяє виконувати виміри за трьома шкалами: А, В, С (або за лінійною шкалою).

У шумомірах використовують електродинамічні та конденсаторні мікрофони.

Для визначення спектрів шуму шумомір підключають до фільтрів та аналізаторів.

У ряді випадків шум записується на магнітофон (через шумомір) а потім в лабораторних умовах аналізується.

Вимірювання шуму на робочих місця промислових підприємств виконують на рівні звуку 2/3 включеного працюючого обладнання.

У теперішній час для вимірювань шуму використовують вітчизняні шумоміри в комплекті з октавними фільтрами.

Із закордонних приладів добрі характеристики мають акустичні комплекти фірм «RFT» та «Брюль і К’єр».

Інфразвук. Область коливань, нечутна для людини. Звичайно верхньою границею інфразвукової області вважають частоти 16–25 Гц. Нижня границя інфразвуку невизначена.

Інфразвук виникає в атмосфері, в лісі, на морі (так званий голос моря). Джерелом інфразвуку є грім, вибухи, гарматні постріли, землетруси.

Для інфразвуку характерне мале поглинання. Тому інфразвукові хвилі у повітрі, воді та в земній корі можуть поширюватися на дуже великі відстані. Ця властивість інфразвуку використовується як передвісник стихійних лих, для дослідження властивостей атмосфери та водяного середовища води.

Захист від інфразвуку являє собою серйозну проблему.

Ультразвук знаходить широке застосування у металообробній промисло­вості, машинобудуванні, металургії тощо. Частота застосовуваного ультразвуку від 20 кГц до 1 мГц, потужності – до кількох кіловат.

Ультразвук справляє шкідливий вплив на організм людини. У працюючих з ультразвуковими установками нерідко спостерігаються функціональні порушення нервової системи, зміни тиску, складу та властивості крові. Частішають скарги на головні болі, швидку втомлюваність, втрату слухової чутливості.

Ультразвук може діяти на людину як через повітряне середовище, так і через рідке або тверде (контактна дія на руки).

Рівні звукових тисків в діапазоні частот від 11 до 20 кГц не повинні перевищувати відповідно 75–110 дБ, а загальний рівень звукового тиску в діапазоні частот 20–100 кГц не повинен перевищувати 110 дБ.

Захист від дії ультразвуку при повітряному опроміненні може бути забезпечений:

¨ шляхом використання в обладнанні більш високих частот, для яких допустимі рівні звукового тиску вищі;

¨ шляхом застосування обладнання, що випромінює ультразвук, у звукоізолюючому виконанні (типу кожухів). Такі кожухи виготовляють з листової сталі або дюралюмінію (товщиною 1 мм) з обклеюванням гумою або руберойдом, а також із гетинаксу (товщиною 5 мм). Еластичні кожухи можуть бути виго­товлені з трьох шарів гуми загальною товщиною 3-5 мм. Застосування кожухів, наприклад, в установках для очищення деталей, дає зменшення рівня ультразвуку на 20-30 дБ у чутному діапазоні частот та 60-80 дБ - в ультразвуковому;

¨ шляхом улаштування екранів, у тому числі прозорих, між обладнанням та працюючим;

¨ шляхом розташування ультразвукових установок у спеціальних приміщеннях, загородках або кабінах, якщо перерахованими вища заходами неможливо отримати необхідний ефект.

Захист від дії ультразвуку при контактному опроміненні полягає в повному виключенні безпосереднього доторкання працюючих до інструмента, рідини та виробів, оскільки такий вплив найбільш шкідливий.

Іонізуючі випромінювання

Іонізуючим випромінюванням називається випромінювання, взаємодія якого з речовиною призводить до утворення у цій речовині іонів різного знаку. Іонізуюче випромінювання складається із заряджених та незаряджених частинок, до яких відносяться також фотони. Енергію частинок іонізуючого випромінювання вимірюють у позасистемних одиницях – електрон-вольтах, еВ. 1 еВ = 1,6×10-19 Дж.

Розрізняють корпускулярне та фотонне іонізуюче випромі­ню­вання.

Корпускулярне іонізуюче випромінювання – потік елементарних частинок з масою спокою, що відрізняється від нуля, які утворюються при радіоактивному розпаді, ядерних перетвореннях, або генеруються на прискорювачах. До нього відносяться: a- та b-частинки, нейтрони (n), протони (р) тощо.

a-випромінювання – це потік частинок, які є ядрами атома Гелію і мають дві одиниці заряду. Енергія a-частинок, що випромінюється різними радіонуклідами, лежить у межах 2-8 МеВ. При цьому всі ядра даного радіонукліда випускають a - частинки, що мають одну й ту саму енергію.

b-випромінювання – це потік електронів або позитронів. Під час розпаду ядер b-активного радіонукліда, на відміну від a-розпаду, різні ядра даного радіонукліда випромінюють b-частинки різної енергії, тому енергетичний спектр b-частинок неперервний. Середня енергія b-спектра складає приблизно 0,3 Еmax. Максимальна енергія b-части­нок відомих у нинішній час радіонуклідів може досягати 3,0-3,5 МеВ.

Нейтрони (нейтронне випромінювання) – нейтральні елементарні частинки. Оскільки нейтрони не мають електричного заряду, під час проходження крізьчерез речовину вони взаємодіють тільки з ядрами атомів. У результаті цих процесів утворюються або заряджені частинки (ядра віддачі, протони, дейтрони), або g-випромінювання, що викликає іонізацію. За характером взаємодії із середо­ви­щем, що залежить від рівня енергії нейтронів, вони умовно поділені на 4 групи:

Фотонне випромінювання - потік електромагнітних частинок, які поширюються у вакуумі із постійною швидкістю 300000 км/с. До нього відноситься g-випромінювання, характеристичне, гальмівне та рентгенівське випромінювання.

Маючи одну й ту саму природу, ці види електромагнітних випромінювань розрізняються за умовами утворення, а також властивостями: довжиною хвилі та енергією. Так, g-випромінювання випромінюється під час ядерних перетворень або при анігіляції частинок.

Характеристичне випромінювання – фотонне випромінювання із дискретним спектром, що випромінюється при зміні енергетичного стану атома, яка обумовлена перебудовою внутрішніх електронних оболонок.

Гальмівне випромінювання – пов’язане із зміною кінетичної енергії заряджених частинок, має неперервний спектр і виникає у середовищі, яке оточує джерело b-випромінювання, у рентгенівських трубках, у прискорювачах електронів тощо.

Рентгенівське випромінювання – сукупність гальмівного та характери­стичного випромінювань, діапазон енергії фотонів яких складає 1 кеВ - 1 МеВ.

Випромінювання характеризуються за їх іонізуючою та проникною здатністю. Іонізуюча здатність випромінювання визначається питомою іонізацією, тобто числом пар іонів, створюваних частинкою в одиниці об’єму, маси середовища або на одиниці довжини шляху. Випромінювання різних видів мають різну іонізуючу здатність.

Проникна здатність випромінювань визначається величиною пробігу. Пробігом називається шлях, який проходить частинка у речовині до її повної зупинки, обумовленої тим або іншим видом взаємодії.

a-частинки володіють найбільшою іонізуючою здатністю. Їх питома іонізація змінюється від 25 до 60 тис. пар іонів на 1 см шляху в повітрі. Довжина пробігу цих частинок в повітрі складає кілька сантиметрів, а у м’якій біологічній тканині – кілька десятків мікрон.

b-випромінювання має суттєво меншу іонізуючу здатність і більшу проникну здатність. Середня величина питомої іонізації в повітрі складає близько 100 пар іонів на 1 см шляху, а максимальний пробіг досягає кількох метрів при великих енергіях.

Найменшою іонізуючою здатністю та найбільшою проникною здатністю володіють фотонні випромінювання. У всіх процесах взаємодії електромагнітного випромінювання із середовищем частина енергії перетворюється в кінетичну енергію вторинних електронів, які, проходячи крізь речовину, виконують іонізацію. Проходження фотонного випромінювання крізь речовину, взагалі не може бути охарактеризоване поняттям пробігу. Послаблення потоку електро­магнітного випромінювання у речовині підлягає експонент­ціальному закону і характеризується коефіцієнтом послаблення m, який залежить від енергії випромінювання та властивостей речовини. Особливість експоненціальних кривих полягає в тому, що вони не перетинаються з віссю абсцис. Це означає, що якою б не була товщина шару речовини, вона не може повністю поглинути потік фотонного випромінювання, а може тільки послабити його інтенсивність у будь-яку кількість разів. У цьому суттєва відмінність характеру послаблення фотонного випромінювання від послаблення заряджених частинок, для яких існує мінімальна товщина шару речовини-поглинача (пробіг), де відбувається повне поглинання потоку заряджених частинок.

Відкриття іонізуючого випромінювання пов’язане з іменем французького вченого Анрі Беккереля. У 1896 р. він знайшов на фотографічних пластинках сліди якихось випромінювань, залишених мінералом, який містив уран, а у 1898 р. Марія Кюрі та її чоловік П’єр Кюрі встановили, що після випромінювань уран спонтанно послідовно перетворюється в інші елементи. Цей процес перетворення одних елементів в інші, що супроводжується іоніза­ційним випромінюванням, Марія Кюрі назвала радіоактивністю. Так була відкрита природна радіоактивність, яку мають елементи із нестабільними ядрами. В 1934 році Ірен та Фредерік Жюліо-Кюрі показали, що діючи нейтронами на ядра стабільних елементів, можна отримати ізотопи із штучною радіоактивністю.

Таким чином розрізняють природні та технічні джерела іонізуючого випромінювання. До природних відносяться космічні, а також земні джерела, що створюють природне опромінювання (природний фон). До технічних відносяться джерела, спеціально створені для корисного застосування випромінювання або такі, що є побічним продуктом діяльності.

Біологічна дія іонізуючих випромінювань

Під дією іонізуючого випромінювання на організм людини у тканинах можуть відбуватися складні фізичні та біологічні процеси. В результаті іонізації живої тканини відбувається розрив молекулярних зв’язків і зміна хімічної структури різних сполук, що в свою чергу призводить до загибелі клітин.

Ще більш суттєву роль у формуванні біологічних наслідків відіграють продукти радіолізу води, яка складає 60-70 % маси біологічної тканини. Під дією іонізуючого випромінювання на воду утворюються вільні радикали Н та ОН, а у присутності кисню також вільний радикал гідропероксиду (НО2) та пероксиду водню (Н2О2), що є сильними окисниками. Продукти радіолізу вступають у хімічні реакції з молекулами тканин, утворюючи сполуки, не властиві здоровому організму. Це призводить до порушення окремих функцій або систем, а також життєдіяльності організму взагалі.

Інтенсивність хімічних реакцій, індукованих вільними радикалами, підвищується і в них залучаються багато сотень і тисяч молекул, що не зазнали опромінювання. В цьому полягає специфіка дії іонізуючого випромінювання на біологічні об’єкти, тобто ефект, створюваний випромінюванням обумовлений не стільки кількістю поглинутої енергії в опроміненому об’єкті, скільки тою формою, в якій ця енергія передається. Ніякий інший вид енергії (теплової, електричної тощо), поглинутої біологічним об’єктом у тій самій кількості, не призводить до таких змін, які викликають іонізуючі випромінювання.

Порушення біологічних процесів можуть бути або оборотними, коли нормальна робота клітин опроміненої тканини повністю відновлюється, або необоротними, що ведуть до ураження окремих органів або всього організму та виникнення променевої хвороби.

Розрізняють дві форми променевої хвороби – гостру та хронічну.

Г о с т р а форма виникає в результаті опромінення великими дозами за короткий інтервал часу. При дозах близько порядку тисяч рад ураження організму може бути миттєвим («смерть під променем»). Гостра променева хвороба може виникнути і під час надходження усередину організму великих кількостей радіонуклідів.

Х р о н і ч н і у р а ж е н н я розвиваються в результаті систематичного опромінення дозами, що перевищують гранично допустимі (ГДД). Зміни у стані здоров’я називаються соматичними ефектами, якщо вони проявляються безпосередньо в опроміненої людини, та спадковими, якщо вони проявляються у його потомства.

Для вирішення питань радіаційної безпеки у першу чергу становлять інтерес ефекти, що спостерігаються при «малих дозах» – порядку кількох сантизивертів на годину та нижче, які реально зустрічаються під час практичного використання атомної енергії. У нормах радіаційної безпеки, за одиницю часу, як правило, використовується рік, і як наслідок цього, поняття річної дози випромінювання.

Дуже важливим тут є те, що згідно сучасним уявленням вихід несприятливих ефектів у діапазоні «малих доз», що зустрічаються у звичайних умовах, мало залежить від потужності дози. Це означає, що ефект визначається передусім сумарною накопиченою дозою незалежно від того, отримана вона за 1 день, за 1 с або за 50 років. Таким чином, оцінюючи ефекти хронічного опромінювання, потрібно мати на увазі, що ці ефекти накопичуються в організмі протягом тривалого часу.

Ще в 1899 р. було встановлено ефект пригнічення ракових клітин іонізуючим випромінюванням. Надалі корисне застосування радіоактивних речовин у різних сферах діяльності стрімко розвивалося. У 1954 р. у Радянському Союзі була запущена перша в світі АЕС. На жаль, дослідження атома призвели до створення та застосування в 1945 р. атомної бомби у Хіросімі та Нагасакі. 26 квітня 1986 р. на ЧАЄС сталася дуже важка аварія, яка призвела до загибелі та захворювання людей, зараження значної території.

Дослідники випромінювань першими стикнулися з їх небезпечними властивостями. А. Беккерель отримав опік шкіри. Марія Кюрі, як припускають, померла від раку крові. Не менше ніж 336 осіб, що працювали з радіоактивними матеріалами, померли від переопромінення. Відмовитися від застосування радіоактивних речовин у науці, медицині, техніці, сільському господарстві неможливо через об’єктивні причини. Зостається один шлях – забезпечити радіаційну безпеку, тобто такий стан середовища життя, за якого з певною імовірністю виключене радіаційне ураження людини.

Джерела забруднення

Розрізняють природні і створені людиною джерела випромінювання. Основну частину випромінювання населення Землі отримує від природних джерел. Природні джерела космічного та земного походження створюють природний радіаційний фон (ПРФ). На території України природний фон створює потужність експозиційної дози від 40-200 мбер/рік. Випромінювання, обумовлене розсіяними в біосфері штучними радіонуклідами, породжує штучний радіаційний фон (ШРФ), який у нинішній час загалом на Земній кулі додає до ПРФ лише 1–3 %.

Поєднання ПРФ та ШРФ утворює радіаційний фон (РФ), який діє на все населення земної кулі, маючи відносно постійний рівень. Космічні промені являють потік протонів та a-частинок, що приходять на Землю із Світового простору. До природних джерел земного походження відносяться – випромінювання радіоактивних речовин, що містяться у породах, грунті, будівельних матеріалах, повітрі, воді.

По відношенню до людини джерела опромінювання можуть знаходитися зовні організму і опромінювати його. У цьому випадку йдеться про зовнішнє опромінення. Радіоактивні речовини можуть опинитися у повітрі, яким дихає людина, у їжі, у воді і попасти всередину організму. Це – внутрішнє опромінювання. Середня ефективна еквівалентна доза, отримувана людиною від зовнішнього опромінювання за рік від космічних променів, складає 0,3 мілізіверта, від джерел земного походження – 0,35 мЗв.

У середньому приблизно 2/3 ефективної еквівалентної дози опромінювання, яку людина отримує від природних джерел радіації, надходить від радіоактивних речовин, які надійшли в організм з їжею, водою, повітрям.

Найвагомішим з усіх природних джерел радіації є невидимий важкий газ радон (у 7,5 раза важчий за повітря), який не має смаку та запаху. Радон і продукти його розпаду випромінюють приблизно 3/4 річної індивідуальної ефективної еквівалентної дози опромінювання, отримуваної населенням від земних джерел, і приблизно за половину цієї дози від усіх джерел радіації. У будівлі радон надходить із природним газом (3 Кбк/добу), з водою 94), із зовнішнім повітрям (10), із будматеріалів та грунту під будівлею ( 60 Кбк/добу).

За останні десятиріччя людина створила більше тисячі штучних раді онук­лідів і навчилася застосовувати їх з різною метою. Значення індивідуальних доз, отримуваних людьми від штучних джерел, сильно різняться.

Нормування радіаційної безпеки

Питання радіаційної безпеки регламентуються законом «Про радіаційну безпеку населення», нормами радіаційної безпеки (НРБ-96) та іншими правилами та постановами.

Усі громадяни і особи без громадянства, що проживають на території України мають право на радіаційну безпеку. Це право забезпечується за рахунок проведення комплексу заходів щодо запобігання радіаційної дії на організм людини іонізуючого випромінювання вище встановлених норм та правил, нормативів, виконання громадянами й організаціями, що здійснюють діяльність із використанням джерел іонізуючого випромінювання, вимог до забезпечення радіаційної безпеки.

Вимоги НРБ-96 є обов’язковими для всіх юридичних осіб. Ці норми є основним документом, що регламентує вимоги радіаційної безпеки і застосовується за всіх умов дії на людину радіації штучного та природного походження.

У НРБ-96 приведені терміни та визначення. Так, в нормах сказано, що радіаційний ризик – це імовірність того, що у людини в результаті опромінювання виникає який-небудь конкретний шкідливий ефект.

Норми встановлюють наступні категорії осіб, що зазнають опромінення: персонал та все населення. Персонал - особи, що працюють з технічними джерелами ( група А або ті особи, що перебувають за умовами роботи у сфері дії технічних джерел (груба Б). Границя індивідуального ризику для техногенного опромінювання осіб із персоналу приймається такою, що дорівнює 1 × 10-3 на рік, для населення 5,0×10-5 на рік. Рівень ризику, яким можна знехтувати, приймається таким, що дорівнює 10-6 на рік.

Для категорій осіб, що зазнають опромінювання, встановлюються три класи нормативів.

¨ допустимі рівні монофакторної (для одного радіонукліда або одного виду зовнішнього випромінювання, шляхи надходження) дії, що є похідними від основних границь дози: границі річного надходження, допустимі середньорічні об’ємні активності (ДОА) та питомі активності (ДПА) тощо;

¨ контрольні рівні (дози та рівні). Контрольні рівні встановлюються адміністрацією установи за узгодженням із органами Державного санітарного епідеміологічного нагляду. Їх чисельні значення повинні враховувати досягнутий в установі рівень радіаційної безпеки та забезпечувати умови, за яких радіаційна дія буде нижча допустимої.

Основні границі дози опромінення осіб із персоналу та населення не включають дози від природних, медичних джерел іонізуючого випромінювання та дозу, отриману внаслідок радіаційних аварій. На ці види опромінювання встановлюються спеціальні обмеження.

При підрахунку внеску у загальне (зовнішнє та внутрішнє) опромінювання від надходження в організм радіонуклідів береться сума добутків надходжень кожного радіонукліда за рік на його коефіцієнт дози. Річна ефективна доза опромінення дорівнює сумі ефективної дози зовнішнього опромінювання, накопиченої за календарний рік, та очікуваної ефективної дози внутрішнього опромінювання, що обумовлена надходженням в організм радіонуклідів за цей самий період. Інтервал часу для визначення величини очікуваної ефективної дози встановлюється таким, що дорівнює 50 років для осіб з персоналу та 70 років - для осіб з населення.

Для кожної категорії осіб, які зазнають опромінювання, допустиме річне надходження радіонукліда розраховується шляхом поділу річної границі дози на відповідний коефіцієнт дози.