Гідравлічний удар в трубах

Витікання рідини через насадки

Витікання рідини через малі затоплені отвори

 

При витіканні рідини в рідке середовище, наприклад в сполучених посудинах (витікання під рівень або через затоплений отвір),як це показано на рис. 4.2, швидкість υ і витрату рідини Q визначають за формулами /4.3/ і /4.5/, але в цьому випадку розрахунковий напір НР буде таким:

 

(4.7)

 

Значення коефіцієнтів витікання (ε, φ, μ) для затоплених отворів приймають такими ж самими, як і у випадку витікання в газове середовище.

 

Рис. 4.2

 

Насадком називається коротка труба довжиною l=(2…5)d, втратами напору якої по довжині нехтують.

Основні типи насадків: циліндричні (зовнішні і внутрішні); конічні (збіжні і розбіжні); коноїдні та ін. Для всіх насадків формули швидкості і витрати при витіканні в атмосферу, як і для випадку витікання через малий отвір, мають вигляд:

 

 

 

Значення коефіцієнтів витікання для різних насадків, розрахованих по їх вихідному перерізі при безвідривному режимі течії даються в довідниках з гідравліки.

 


 

Гідравлічним ударом називають різку зміну тиску в напірному трубопроводі при раптовій зміні швидкості руху рідини. Останнє може бути спричинено швидким закриттям чи відкриттям засувки, крана, клапана, швидкою зупинкою чи пуском гідродвигуна або насоса. В усіх цих випадках при зменшенні або збільшенні швидкості руху рідини тиск перед запірним пристроєм відповідно різко зростає (позитивний гідравлічний удар) чи падає (від’ємний гідравлічний удар). Причому підвищення тиску може бути настільки великим, що здатне призвести до розриву трубопроводу.

Власне і вивчення природи гідравлічного удару почалося в зв’язку з частими аваріями на нових лініях московського водопроводу, збудованих на кінці ХІХ ст. Причини аварій досліджував видатний російський вчений М.Є.Жуковський (1898), який і розробив теорію гідравлічного удару (1899).

За М.Є.Жуковським при миттєвому закритті засувки (крана) в трубопроводі швидкість руху води перед нею зменшується до нуля і кінетична енергія потоку переходить в потенціальну енергію тиску, яка в свою чергу викликає деформацію стінки трубки і самої рідини. Це підвищення тиску, так звана ударна хвиля, розповсюджується від засувки по всій довжині трубопроводу зі швидкістю c, яку називають швидкістю розповсюдження ударної хвилі (рис.5.1).

 

Рис.5.1

В припущенні, що кінетична енергія рідини повністю переходить в роботу деформації труби і рідини, а засувка закривається миттєво, М.Є.Жуковський отримав формулу для визначення величини підвищення тиску при гідравлічному ударі, яка має вигляд:

 

, (5.1)

 

де швидкість ударної хвилі:

 

. (5.2)

 

В цих формулах ρ – густина рідини; υ0 – швидкість при усталеному русі рідини в трубопроводі; Ер, Ест – модулі пружності рідини і матеріалу труби відповідно; d – внутрішній діаметр труби; δ – товщина стінки трубопровода.

Величина - це швидкість розповсюдження пружних деформацій, тобто швидкість звуку в середовищі густиною ρ і модулем пружності Ер. Для води с=1425 м/с, для масел – 1200...1400 м/с.

Формулу М.Є.Жуковського /5.1/ використовують для розрахунків підвищення тиску при так званому прямому гідравлічному ударі, тривалість фази якого (тобто часу, протягом якого ударна хвиля, що виникла біля засувкиі, досягне резервуара, відобразиться від нього і знову підійде до засувки)

 

, (тут l – довжина трубопроводу.) (5.3)

 

більше часу закриття засувки tз.

При tф<tз виникає непрямий гідравлічний удар. В цьому випадку підвищення тиску визначають за формулою:

 

. (5.4)

 

Гідравлічний удар може бути неповним, якщо початкова швидкість υ0 руху рідини змінюється до деякого значення υ, що має місце, наприклад, при частковому перекритті запірного пристрою. Тоді:

 

. (5.5)

 

Доцільно відзначити, що при прямому гідравлічному ударі між швидкістю руху рідини і підвищенням тиску існує таке наближене співвідношення:

 

(5.6)

де υ0 – в м/с