Алгоритм построения прямых параллельных

Вербальная форма Графическая форма
1. Через точку М провести прямую l || a
2. Через точку М1 проведем l1|| a1
3. Проведем l2|| a2 через точку М2

Таким образом, можно сделать следующий вывод: l параллельна а, так как l1 параллельна a1 и l2 параллельна a2.

Выводы

Прямые в пространстве могут быть:

– пересекающимися;

– параллельными;

– скрещивающимися.

Изображение этих прямых на комплексном чертеже характеризуется расположением их проекций, а именно:

1. если прямые пересекаются в пространстве, то на комплексном чертеже их одноименные проекции пересекаются, а точки пересечения их проекций лежат на одном перпендикуляре к оси проекций;

2. если прямые в пространстве параллельны, то на комплексном чертеже их одноименные проекции параллельны между собой;

3. если прямые скрещиваются в пространстве, то на комплексном чертеже их одноименные проекции пересекаются, но точки их пересечения не лежат на одном перпендикуляре к оси проекций.

Видимость прямых относительно плоскостей проекций определяется с помощью конкурирующих точек.

Используя изученный материал, можно решать на комплексном чертеже такие позиционные задачи, как:

– определять положение прямых и точек относительно друг друга и плоскостей проекций;

– выполнять построение прямых с заданными свойствами (параллельность, пересечение и т.п.).