Індивідуальні завдання 1 страница

8.15. . 8.16. . 8.17. .

8.11. . 8.12. . 8.13. .

ВІДПОВІДІ

1.1. а) 2 3, б) , в) , г) . 1.2. , , .

1.3. а) , б) , в) , г) . 1.4. а) ,

б) . 1.6.а) ,б)102,в) . 2.1.а) 31,б) 260.

2.2.а) 0, б) 0, в) -25600. 2.3. . 2.4. 11.

3.1.а) ,б)не існує,в) ,г)не існує.

3.2.а)3, б) 3, в) 1. 4.1. . 4.2.

5.1. . 5.2.а) так, б) так, в) ні. 5.3.а) так, б) так.

5.4. . 5.5. . 5.6. . 6.1.0.6.2. .

6.3. . 6.4. . 6.5. . 6.6. 24. 6.7. . 6.8. -5. 6.9.182. 6.10.а) ні; б) ні. 7.1. . 7.2. Точка В. 7.3. б) і в). 7.4. . 7.5. .8.1.а) ,б) ,в) ,г) . 8.2.а) проходить через початок координат, б) паралельна осі , в) паралельна осі , г) співпадає з віссю , д) відтинає відрізки довжиною 2 і 7 на осях , відповідно, е)співпадає звіссю . 8.4.а) ,б) ,в) ,г) . 8.5. .

8.6.1) проходить через початок координат, 2) проходить через вісь ,

3) паралельна осі , 4) паралельнакоординатній площині . 8.7. . 8.8. . 8.9. . 8.10.-15, -10 і 6.

8.18. . 9.1. . 9.2.а) , б) , в) , г) ,

д) , е) . 9.3. . 9.4. . 9.5. . 9.6. або . 9.7. .

 


1. Знайти матрицю , де – одинична матриця третього порядку, якщо:

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15. .

16. .

17. .

18. .

19. .

20. .

21. .

22. .

23. .

24. .

25. .

26. .

27. .

28. .

29. .

30. .

31. .

32. .

33. .

34. .

35. .

2. Обчислити визначник трьома способами:

а) за означенням (правило трикутника);

б) розклавши визначник за елементами рядка або стовпчика;

в) звівши за допомогою властивостей до трикутного вигляду.


1. . 2. . 3. .

4. . 5. . 6. .

7. . 8. . 9. .

10. . 11. . 12. .

13. . 14. . 15. .

16. . 17. . 18. .

19. . 20. . 21. .

22. . 23. . 24. .

25. . 26. . 27. .

28. . 29. . 30. .

31. . 32. . 33. .

34. . 35. .


3. Розв’язати систему: а) матричним способом; б) за формулами Крамера; в) методом Гауса.


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.


4. Дослідити систему лінійних рівнянь на сумісність. У випадку сумісності розв’язати її.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

 

5. В базисі дано вектори . Показати, що вектори утворюють базис, і знайти координати вектора в базисі .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35. .

 

6. Задано вершини піраміди . За допомогою засобів векторної алгебри знайти:

1) довжину ребра ;

2) кут між ребрами і ;

3) площу грані ;

4) проекцію вектора на вектор ;

5) об’єм піраміди .

1. A1( 1, –1, 0) A2( 3, -2, -3) A3( -2 , 1, 4) A4( 1, 5, 8)
2. A1( 0, 4, -4) A2( 5, 1, -1) A3( -1, -1, 3) A4( 0, -3, 7)
3. A1( 7, 7, -5) A2( 3, 3, -3) A3( 5, 14, -13) A4( 3, 5, -2)
4. A1( 1, -2, -3) A2( 5, -2, 1) A3( 2, 1, -4) A4( 1, -2, 3)
5. A1( 0, 3, -4) A2( -1, -3, 4) A3( 2, -1, 3) A4( -5, 1, 1)
6. A1( 8, 0, 1) A2( 2, 2, 3) A3( -5, 3, 2) A4( 4, -4, 0)
7. A1( -6, 4, 2) A2( -3, -4, 0) A3( 0, -1, 2) A4( -3, 0, 3)
8. A1( -1, 5, -8) A2( 1, -2, 0) A3( -3, -4, 3) A4( -3, -6, 2)
9. A1( 1, 12, -15) A2( -1, 1, -5) A3( -1, 3, -4) A4( 3, 5, -7)
10. A1( 12, -2, 10) A2( 9, 0, 8) A3(1, -4, 0) A4( 2, -6, 2)
11. A1( 10, 0, 2) A2( 7, 2, 0) A3( -1, -2, -8) A4( 0, -4, -6)
12. A1( -8, 3, -1) A2( 3, 5, 9) A3( -7, 1, 1) A4( 0, 7, 7)
13. A1( 13, 1, 6) A2( 10, 3, 4) A3( 2, -1, -4) A4( 3, -3, -2)
14. A1( 3, 1, -2) A2( 4, -2, 0) A3( 11, 5, 6) A4( 14, 3, 8)
15. A1( 1, 0, -8) A2( 0, 2, 8) A3( -10, 6, -2) A4( 11, 4, 0)
16. A1( 4, 0, 6) A2( 6, 9, -5) A3( 8, 2, 3) A4( 4, -2, 5)
17. A1( 6, 1, 10) A2( -1, -5, 4) A3( 9, -1, 12) A4( -2, -3, 2)
18. A1( -4, 5, -5) A2( 4, 5, 3) A3( 7, 7, 5) A4( -3, 3, -3)
19. A1( -7, 1, 1) A2( 0, 7, 7) A3( -8, 3, -1) A4( 3, 5, 9)
20. A1( 6, 1, -1) A2( 2, -3, 1) A3( 2, -1, 2) A4( 4, 8, -9)
21. A1( -3, 4, -3) A2( -2, 2, -1) A3( 8, 6, -7) A4( 5, 8, 5)
22. A1( -1, -5, 4) A2( 9, -1, 12) A3( 6, 1, 10) A4( -2, -3, 2)
23. A1( 3, 5, -7) A2( -1, 1, -5) A3( -1, 3, -4) A4( 1, 12, -15)
24. A1( -4, 2, -1) A2( 0, 6, -3) A3( -2, -13, 11) A4( -4, 4, 0)
25. A1( -5, 1, 1) A2( 0, 3, -4) A3( -1, -3, 4) A4( 2, -1, 3)
26. A1( 1, 4, -1) A2( 4, -1, 2) A3( 1, -8, 8) A4( 5, 3, 2)
27. A1( 4, 2, -1) A2( 2, -1, 4) A3( -2, 3, 4) A4( -1, -1, 1)
28. A1( 7, 7, -5) A2 ( 3, 3, -3) A3( 3, 5, -2) A4( 5, 14, -13)
29. A1( -1, 4, -4) A2( 5, 0, -1) A3( -4, -1, 3) A4 ( 0, -3, 6)
30. A1( 0, 7, -2) A2( -2, 9, -10) A3( -3, 4, 0) A4( -6, 2, -1)
31. A1( 2, 6, -3) A2( 1, 3, -1) A3( -8, 4, 0) A4( -5, -2, 1)
32. A1( 0, 5, -3) A2( -2, 1, -4) A3( -4, -7, 1) A4( 3, -1, 7)
33. A1( 1, 7, 0) A2( -1, 5, -9) A3( 4, 4, 8) A4( -3, 2, -1)
34. A1( 0, 2, -4) A2( 1, 10, -8) A3( -2, -2, 0) A4( 5, 7, -1)
35. A1( -3, 0, -3) A2( -2, 4, -11) A3( 8, -4, 0) A4( -7, -2, 6)