Загальне рівняння прямої на площині

Положення прямої на площині повністю визначається деякою точкою цієї прямої і ненульовим вектором , перпендикулярним до цієї прямої (рис. 8.2).

Ненульовий вектор, перпендикулярний до прямої, називають нормальним вектором цієї прямої.

Для довільної точки прямої і тільки для точок даної прямої вектор . Записавши умову перпендикулярності цих векторів в координатній формі, отримаємо рівняння прямої, що проходить через задану точку перпендикулярно до заданого вектора:

. (8.3)

Це рівняння є рівнянням першого степеня відносно поточних координат , .

Так як вектор – ненульовий, то .

Ввівши позначення , з рівняння (8.3) отримаємо

. (8.4)

Рівняння (8.4) називають загальним рівнянням прямої на площині.

Частинні випадки загального рівняння прямої:

1) Якщо , то рівняння набуде вигляду . Цьому рівнянню задовольняють координати початку координат . Отже, пряма проходить через початок координат.

2) Якщо , то рівняння матиме вигляд або – рівняння прямої, паралельної осі .

3) Якщо , то рівняння набуде вигляду або – рівняння прямої, паралельної осі .

Приклад 8.2.Скласти рівняння прямої, що проходить через задану точку перпендикулярно до заданого вектора .

Розв’язок. Підставимо координати точки і вектора в рівняння (8.3), отримаємо

або . t