IV. Решение задач.
III. Работа по учебнику.
1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу.
2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264.
1. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что
Решение
Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем поэтому .
Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке.
2. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ =
= 2 : 3. Докажите, что для любой точки О справедливо равенство
Решение
По условию AC : CB = 2 : 3, поэтому
Но
Следовательно, откуда получается
Примечание. Задача 3 является частным случаем более общей задачи 806.
3. Решить задачу № 784 на доске и в тетрадях.
4. Решить задачу № 786 на доске и в тетрадях.
Решение
Так как точка А1 – середина стороны ВС, то .
Далее
5. При наличии времени решить задачу 4.
Точки K, L, M, N – середины сторон AB, BC, CD, DE пятиугольника ABCDE, а точки P и Q – середины отрезков KM и LN. Докажите, что PQ || AE и PQ = 1/4 AE. |
Решение
Пусть О – произвольная точка. Согласно задаче 1 из п. 84
.
Аналогично, .
Из этих равенств следует, что
Отсюда следует, что PQ || AE и PQ = AE.