II. Выполнение упражнений.
I. Устная работа.
Ход урока
Урок 12
IV. Итог урока.
III. Закрепление изученного материала.
1. Разложить число на простые множители:
а) 16; б) 18; в) 15; г) 20; д) 72; е) 150.
2. Решить № 121 (а) на доске и в тетрадях.
3. Решить с комментированием № 122 (а).
4. Решить № 124 (а; б) с объяснением.
5. Повторение ранее изученного материала:
а) решить № 127 и 132 (г; д; е);
б) решить задачу № 133.
6*. Знаменитый ученый Христиан Гольдбах (1690–1764), работавший в Петербургской академии наук, высказал догадку (в 1742 г.), что любое натуральное число, большее 5, может быть представлено в виде суммы трех простых чисел. Проверить это на примере нескольких чисел.
Вопросы:
а) Существуют ли составные числа, которые нельзя разложить на простые множители?
б) Чем могут отличаться два разложения одного и того же числа на простые множители?
Домашнее задание: изучить п. 5; решить № 141 (а), № 142 (а; в), № 143, № 140 (устно).
Цели: выработать навык разложения чисел на простые множители; развивать логическое мышление учащихся.
1. Решить № 125 (3-е и 4-е задания каждого столбика).
2. Решить № 126, 128 и 129.
3. Проверить выполнение учащимися домашнего задания:
а) устно № 140 по рисунку 6 учебника;
б) устно по тетрадям проверить № 142 (а; в);
в) на доске один учащийся записывает решение задачи № 143.
Решение.
Пусть первый тракторист вспахал х га земли, тогда второй вспахал 1,2х га.
Вместе они вспахали 12,32 га земли. Составим и решим уравнение:
х + 1,2х = 12,32
2,2х = 12,32
х = 12,32 : 2,2 = 123,2 : 22
х = 5,6.
Первый тракторист вспахал 5,6 га земли, второй вспахал 12,32 – 5,6 = 6,72 (га).
Ответ: 5,6 га; 6,72 га.
1. Решить № 121 (б; в) на доске и в тетрадях.
Показать более простой способ разложения на простые множители чисел, оканчивающихся нулями: так как 10 т = 2 · 5, то
220 = 22 · 5 400 = 22 · 22 · 52 8000 = 26 · 53
2. Решить № 122 (б) самостоятельно (с последующей проверкой).
3. Устно решить № 124 (в; г).
4. Решить № 123 с комментированием.
5. Повторение материала:
а) решить № 131.
Ответ:
б) решить № 135.
6. Самостоятельно решить № 139 (1; 3).