Ограниченные и неограниченные последовательности.
Числовая последовательность.
Математический анализ.
Показательная форма комплексного числа.
Рассмотрим показательную функцию
Данное равенство называется уравнением Эйлера.
Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность
x1, х2, …, хn = {xn}
Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство:
т.е. все члены последовательности принадлежат промежутку (-М; M).
Пример. {xn} = n – ограничена снизу {1, 2, 3, … }.
Число а называется пределом последовательности {xn}, если для любого положительного e>0 существует такой номер N, что для всех n > N выполняется условие:
Это записывается: lim xn = a.
В этом случае говорят, что последовательность {xn}сходится к при n®¥.
Теорема. Последовательность не может иметь более одного предела.
Возрастающие и убывающие последовательности называются строго монотонными.
Пример. {xn} = 1/n – убывающая и ограниченная
{xn} = n – возрастающая и неограниченная.