Промежуточные расчетные значения слагаемых кумулятивного Т-критерия

Месяц yt yt
Январь 78,4 6 146,56 -19,58 -19,58 383,38
Февраль 75,4 5 685,16 -22,58 -42,16 1 777,47
Март 76,1 5 791,21 -21,88 -64,04 4 101,12
Апрель 76,6 5 867,56 -21,38 -85,42 7 296,58
Май 85,1 7 242,01 -12,88 -98,30 9 662,89
Июнь 101,4 10 281,96 3,42 -94,88 9 002,21
Июль 110,6 12 232,36 12,62 -82,26 6 766,71
Август 117,9 13 900,41 19,92 -62,34 3 886,28
Сентябрь 126,2 15 926,44 28,22 -34,12 1 164,17
Октябрь 132,1 17 450,41 34,12 0,00 0,00
Итого 979,8 100 524,08 - - 44 040,81

 

= = = 97,98;

 

s = 100 524,08 – (97,98)2 × 10 = 4 523,28.

Соответственно, подставляя в формулу полученные значения, получаем:

Тр = = 9,74

Так как Тр (9,74) > Ткр (0,05; n=10; Tкр = 4,55), то гипотеза об отсутствии тенденции отвергается, следовательно во временном ряду объема вложений в ценные бумаги финансовой компании тенденция существует.

Гипотезу о форме тренда также можно проверить с помощью кумулятивного T-критерия, где:

Zn – накопленные суммы отклонений эмпирических значений признака от теоретических, по тренду полученных.

Фактическое значение Тр сравнивается с критическим для соответствующей функции f(t). Критические значения табулированы (приложение 5).

Расчет статистической характеристики критерия Тр для проверки гипотезы о форме тренда рассмотрим на примере линейной функции (табл. 2.3).

Для временного ряда валового надоя молока линейная функция имеет вид: `

yt = 607,8 – 10,2t.

Согласно проведенным расчетам фактическое значение Тр = 4,48. Оно больше критического T0.95(10) = 1,48, следовательно, линейная функция хорошо аппроксимирует тенденцию изменения валового надоя молока.

Аналогично рассчитанное значение Тр = 0,98 для параболы II порядка `

yt = 594,93 – 10,2t + 0,39t2,

что заметно ниже критического значения. Это дает основание на уровне значимости 0,05 признать, что парабола не подходит для описания тенденции валового надоя молока.

Таблица 2.3