Круговорот углерода
Круговорот азота
Азот составляет около 80% атмосферного воздуха и является крупнейшим резервуаром и предохранительным клапаном атмосферы. Однако большинство организмов не могут усваивать азот из воздуха. Между тем азот участвует в построении всех белков и нуклеиновых кислот. Усваивать азот из воздуха способны только некоторые организмы — бактерии, которые существуют в симбиозе с бобовыми растениями (горох, фасоль, соя). Они поселяются на корнях бобовых растений, образуя клубеньки, в которых и происходит химическая фиксация азота. Азот могут усваивать также сине-зеленые водоросли, называемые цианобактериями. Они образуют симбиоз с плавающим папоротником, который растет на заливаемых водой рисовых полях и до высадки рассады риса удобряет эти поля азотом. Первый этап фиксации атмосферного азота приводит к образованию аммиака и называется аммонификацией (рисунок 3 ).
Рисунок 3 :Круговорот азота в биосфере
Аммиак используется растениями для синтеза аминокислот, из которых состоят белки. Второй этап фиксации азота микроорганизмами — нитрификация, при этом образовавшийся аммиак преобразуется в соли азотной кислоты — нитраты. Нитраты усваиваются корнями растений и транспортируются в листья, где происходит синтез белков. Процесс разложения белков, осуществляемый особой группой бактерий, называется денитрификацией. Распад идет сначала с образованием нитратов, потом аммиака и, наконец, молекулярного азота. Содержание азота в живых тканях составляет около 3% его содержания в обменных фондах экосистем. Общее время круговорота азота — примерно 100 лет.
Круговороты углекислоты и воды в глобальном масштабе — самые важные для человечества биогеохимические круговороты.
В круговороте СО2 атмосферный фонд невелик по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры. До наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы. Но в XXв. содержание СО2 постоянно растет в результате новых техногенных поступлений (сжигание горючих ископаемых, деградация почвенного слоя, сведение лесов и.д.). В 1800 г. в атмосфере Земли содержалось 0,29% С02; в 1958 - 0,315%, а к 1980 г. его содержание выросло до 0,335%. Если концентрация СО2 вдвое превысит доиндустриальный уровень, что может случиться в середине XXI в., то температура поверхности Земли и нижних слоев атмосферы в среднем повысится на 3°С. В результате подъем уровня моря и перераспределение осадков могут погубить сельское хозяйство.
Биологический круговорот углерода достаточно прост; в нем участвуют только органические соединения и С02 в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания весь углерод, содержащийся в органических соединениях, превращается в СО2. Растения потребляют ежегодно около 100 млрд. т углерода, 30 млрд. т возвращаются в атмосферу в результате дыхания растений. Остальные 70 млрд. т обеспечивают дыхание и продукцию животных, бактерий и грибов в различных трофических цепях. Растения и животные ежегодно пропускают через себя 0,25 - 0,30% углерода, содержащегося в атмосфере и океанах. Весь обменный фонд углерода совершает круговорот каждые 300 - 400 лет.
Кроме СО2 в атмосфере присутствует в небольших количествах окись углерода — СО (примерно 0,1 части на миллион). Однако в городах с сильным автомобильным движением содержание СО может достигать 100 частей на миллион, что представляет уже угрозу для здоровья человека. Для сравнения можно привести другой пример: курильщик, потребляющий в день пачку сигарет, получает до 400 частей на миллион, что часто является причиной анемии и других сердечно-сосудистых заболеваний.
Другое соединение углерода в атмосфере — метан (СН4). Его содержание составляет 1,6 частей на миллион. Считается, что метан поддерживает стабильность озонового слоя в атмосфере.
Рисунок 4 : Круговорот углерода в биосфере