Векторов к доказательству теорем
Приложение скалярного произведения
1. Теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
□ Пусть в . Докажем, что .
Запишем сначала векторное равенство для векторов, содержащих стороны , применив правило треугольника:
(рис. 13).
Возведем это векторное равенство в скалярный квадрат: .
По следствию из свойства А30
.
Так как , то по свойству Г10 . Применив Г20, получаем:
.
Учитывая, что , , (т.е. длина вектора - это длина отрезка АВ), окончательно будем иметь:
. ■
2. Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними.
□ Докажем, что (рис. 14).
Представим вектор в виде разности векторов двух других сторон:
.
Возведем обе части этого векторного равенства в скалярный квадрат:
.
Далее воспользуемся следствием из свойства А30:
.
Учитывая, что , , и , получим:
,
откуда
. ■