Постановка задачи
Раздел 3. Численное решение нелинейных уравнений
Одной из важных практических задач при исследовании различных свойств математической модели в виде функциональной зависимости y = f(x) является нахождение значений x, при которых эта функция обращается в ноль, т.е. решение уравнения
f(x) = 0 . (1)
Как правило, точное решение его можно получить только в исключительных случаях, так как оно в большинстве случаев носит нелинейный характер. Нелинейные уравнения делятся на два класса:
1) алгебраические, содержащие только алгебраические выражения;
2) трансцендентные, содержащие и другие функции (тригонометрические, показательные, логарифмические и др.).
Методы решения нелинейных уравнений делятся на прямые и итерационные методы.
Прямые методы позволяют записать корни в виде некоторых конечных соотношений (формул) для простых тригонометрических, логарифмических, показательных и простейших алгебраических уравнений.
Однако подавляющее число практически значимых уравнений могут быть решено только итерационными методами, т.е. методами последовательных приближений (численными методами).
Решение уравнений (1) при этом осуществляется в два этапа:
1) определение местоположения, характера интересующего нас корня и выбор его начального значения;
2) вычисление корня с заданной точностью e, посредством выбранного какого-либо вычислительного алгоритма.
На первом этапе вначале определяют, какие корни требуется найти, например, только действительные или только положительные или наименьший корень и т.д. Затем находят отрезки из области определения функции y = f(x), взятой из (1), содержащие по одному корню.
Имеются различные подходы к решению данной задачи для обоих видов нелинейных уравнений.
На втором этапе используются итерационные методы, позволяющие с помощью некоторого рекуррентного соотношения
(2)
при выбранном начальном приближении к x* построить последовательность (xn).
Как правило, всегда стоит задача обеспечения сходимости последовательности (2) к истинному значению корня x*. Сходимость достигается посредством выбора различными способами функций j в (2), которая зависит от f(x) и в общем случае от номера последовательности решений (n). При этом если при нахождении значения xn » xk » x*, используется одно предыдущее значение m=1, то такой метод называется одношаговым. Если используется m предыдущих значений, то метод называется m-шаговым и, как правило, с увеличением m вычислительные алгоритмы усложняются.
Расчет по рекуррентной последовательности продолжается до тех пор, пока | xn – xn–1| < e. Тогда последнее xn выбирается в качестве приближенного значения корня (x* » xn).
На практике имеется большой выбор законов j, что обеспечивает многообразие численных итерационных методов решения нелинейных уравнений.