Лекция №11 Эмбриональный период онтогенеза.

Лекция №10 Введение в медицинскую генетику.

Лекция №9 Введение в общую генетику. Законы Г. Менделя.

 

Генетика – наука о закономерностях наследственности и изменчивости живых организмов и методах управления ими. Термин "генетика" от греческого "genesis" - относящийся к происхождению – предложил в 1906 году У. Бэтсон. В основу генетики легли закономерности наследственности, установленные Г. Менделем в 1865 г. и мутационная теория Х. Де Фриза 1901-1903 гг.

Объектами генетики являются все живые организмы. В зависимости от объекта исследований выделяют:

генетику растений;

генетику животных;

генетику микроорганизмов;

генетику человеку и т.д.

Предмет генетики – два свойства живых организмов – наследственность и изменчивость.

Методы генетики:

Метод генетического анализа:

1. Гибридологический метод – предложен Г. Менделем; суть его в анализе и учете исследуемых признаков у гибридов и их потомства;

Особенности этого метода:

а) подбор родительских пар с альтернативными признаками

б) точный количественный учет потомков от каждой родительской пары по каждому признаку отдельно

в) анализ потомков каждого гибрида в ряду поколений.

2. Комбинационный метод – изучает результаты внутри – и межвидовой гибридизации, виды комбинативной изменчивости, ее значение для селекции и видообразования.

3. Мутационный метод (разновидность – метод индуцированного мутагенеза) – изучает роль внешней среды и ее различных факторов в наследственной изменчивости.

Вспомогательные методы:

1. Популяционно – статистический метод – позволяет изучать распространение отдельных генов, различных генотипов в популяциях;

2. Метод селективных сред – метод применяется в генетике микроорганизмов; позволяет изучать наличие и проявление (экспрессию) генов;

3. Цитологический метод – позволяет изучать строение хромосом и их роль во внутриклеточных процессах;

4. Цитогенетический метод – метод микроскопического исследования хромосом, значительно обогатил генетику с появление электронной микроскопии, которая позволила изучить ультраструктуру хромосом;

5. Метод молекулярного анализа (гибридизация, ДНК, полимерная цепная реакция) – позволяет изучить тонкую структуру генов, их виды расположение в хромосомах, механизмы их проявления;

6. Онтогенетический метод – изучает особенности реализации генов в различные периоды онтогенеза;

7. Биохимический метод – изучает проявление действия генов на уровне функционирования белков – ферментов и протекания процессов обмена веществ в клетках и тканях.

С помощью различных методов генетики изучают наследственность и изменчивость на разных уровнях организации наследственного материала: молекулярном, субклеточном, клеточном, организменном, популяционно – видовом.

Одновременно в генетике используются методы смежных биологических дисциплин. В зависимости от используемых методов различают:

- цитологическую генетику;

- биохимическую генетику;

- молекулярную генетику;

- экологическую генетику и т.д.

 

 

Задачами генетики на современном этапе являются:

1. Изучение молекулярных структур клетки, хранящих генетическую информацию и способы ее кодирования.

2. Изучение механизмов и закономерностей передачи генетической информации из поколения в поколение на субклеточном и молекулярном уровне.

3. Анализ способов и вариантов реализации генетической информации в признаки.

4. Изучение мутаций и механизмов их возникновения на субклеточном и молекулярном уровне.

5. Разработка путей и методов конструирования наследственных структур живых организмов.

6. Изучение возможностей создания модифицированных геномов методами молекулярной генетики, генной инженерии для нужд селекции сельскохозяйственных животных и растений, медицинской генетики и т.д.

7. Изучение действия на живые организмы и их наследственные структуры различных видов излучений. Значение этих воздействий в эволюционных процессы.

8. Изучение генофонда человеческой популяции и влияние различных факторов на генофонд. Разработка мер профилактики, направленных на сохранение генофонда современных и будущих поколений.

9. Разработки методов профилактики, предотвращения и, возможно, лечения наследственных заболеваний.

10. Продолжение исследования генома человека.

 

Основные понятия и термины генетики

 

Наследование – передача генетической информации от одного поколения другому.

Наследственность - свойство живых организмов обеспечивать материальную и функциональную преемственность между поколениями и специфический характер индивидуального развития.

Изменчивость – свойство живых организмов изменять наследственные задатки, приобретать новые признаки в процессе развития организмов при взаимодействии с внешней средой.

Ген – (греч. : род, происхождение) – фрагмент молекулы ДНК (РНК – у некоторых вирусов), кодирующий первичную структуру полипептида.

Доминантный ген (аллель) – ген, проявление действия которого не зависит от наличия других генов данной серии в организме. Обозначается заглавными буквами латинского алфавита А, В, С).

Рецессивный ген (аллель) – ген, проявляющий действие в отсутствии доминантной аллели, обозначают а, в, с.

Гены(аллели) – активность которых одинакова при их совместном присутствии в генотипе , называют кодоминтатными.

Генотип – совокупность всех генов организма, которая реализуется в фенотипе в пределах нормы реакции в определенных условиях внешней среды.

Геном – совокупность генов гаплоидного набора хромосом данного вида организмов.

Генофонд - совокупность всех генов популяции или вида.

Фенотип – совокупность внешних и внутренних признаков и свойств организма, определяемых генотипом и реализующихся в пределах нормы реакции в определенных условиях внешней среды.

Норма реакции – пределы, в которых изменяются фенотипические признаки в зависимости от условий среды.

Альтернативными называют противоположные или взаимоисключающие проявления одного и того же признака.

Аллельные гены – гены, расположенные в одинаковых локусах гомологичных хромосом и отвечающих за развитие одного и того же проявления признака, или за развитие альтернативных проявлений признака.

Неаллельные гены – гены расположенные в разных локусах гомологичных хромосом или разных парах хромосом, отвечающие за развитие одного или разных признаков.

Гомозигота – организм, в одинаковых локусах гомологичных хромосом которого находятся одинаковые по проявляемости гены (АА, аа). При половом размножении образует один сорт гамет.

Гетерозигота – организм, в одинаковых локусах гомологичных хромосом которого находятся разные по проявляемости гены (Аа). При размножении образует два сорта гамет.

 

Виды скрещивания:

моногибридное – родители отличаются по одной паре альтернативных признаков;

дигибридное – родители отличаются по двум парам альтернативных признаков;

полигибридное - родители отличаются по трём и более парам альтернативных признаков;

анализирующее – скрещивание, при котором один родитель с неизвестным генотипом, а второй гомозиготный по рецессивному гену;

возвратное – частный случай анализирующего скрещивания

 

Предпосылки появления генетики:

1) селекционная работа (Европа XIX век)

2) развитие экспериментальных областей биологии:

а) сравнительная эмбриология и анатомия;

б) цитология;

в) физиология;

г) развитие эволюционного учения.

Этапы развития генетики

Генетика – наука относительно молодая, но история ее имеет три основных этапа:

1865-1900 год - I этап

1900-1953 год – II этап

1953- по настоящее время

 

I этап. 1865-1900 год. Изучение генетических закономерностей на организменном уровне.

1. 1865 г открытие законов наследствнности Г. Менделя.

2. 1900 Второе рождение генетики:

К. Корренс (Германия)

Де Фриз (Голландия)

Э. Чермак (Австрия) – вторично открыли законы Менделя.

II этап. Изучение генетических явлений на клеточном и субклеточном уровнях

3. 1901 – 1903 г. Де Фриз создал мутационную теорию.

4. В 1902 г. Т. Бовери создал ядерную теорию наследственности.

5. 1902 г. Э. Вильсон и Д. Сеттон развили это положение и предположили параллелизм между хромосомами и передачей наследственных признаков.

6. 1906 г. У. Бэтсон предложил термин "генетика"

7. 1909 г. В. Иогансен предложил термин "ген"

 

Начиная с 1903 г. по 1908 г. Т. Морган (1866-1945 с коллегами публикует ряд работ посвященных роли хромосом в процессах наследственности, а в период 1908-1918 г. формулирует хромосомную теорию наследственности.

1919 год – Ю.А. Филипченко создал первую в нашей стране кафедру генетики при Петроградском университете и написал первый отечественный учебник генетики.

1920 год – Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости.

1925 г. – Г. Надсон, Г. Филлипов – получили индуцированные мутации на грибах.

1927 г. - Г. Меллер получил индуцированные мутации на дрозофиле.

 

1928 г. – Н.К. Кольцов высказал мысль о связи единиц наследственности генов с определенным химическим веществом, считая хромосомы белковыми молекулами, способными к самовоспроизведению

В 30-е годы А.Н. Белозерский доказал, что ДНК это обязательный компонент хромосом.

40-е годы Г. Бидл, Е. Татум установили, что гены определяют образование ферментов по принципу: 1 ген – 1 фермент.

А.С. Серебровский – формулирует теорию делимости гена, разрабатывает математические методы для решения генетических проблем.

1944 г. О. Эвери, К Мак-Леод, М. Мак-Карти на микроорганизмах установили, что передача наследственной информации связана с ДНК.

В начале 50-х гг. Р. Уилкинсон с помощью R-лучей и математических расчетов получил

R-грамму ДНК.

- Э. Чаргафф – открыл правило комплементарности пуриновых и пиримидиновых оснований.

IIIэтап – изучение генетических явлений на молекулярном уровне: Начался: с 1953 г., когда Д. Уотсон и Ф.Крик расшифровали структуру ДНК.

В 1961 г. они же расшифровали свойства генетического кода (Нобелевская премия). В конце 60-х годов складывается новое направление в генетике на основе молекулярно – генетических исследований. Появилась возможность получения гибридных и модифицированных геномов, находящих в настоящие время все более широкое применение в микробиологической и фармацевтической промышленности.

 

 

Законы Г. Менделя

 

а) 1-ый закон Г. Менделя: (закон единообразия гибридов первого поколения, правило доминирования) (слайд 1 ).

- при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

 

б) 2-ой закон Г. Менделя (закон расщепления гибридов второго поколения) (слайд 2).

- при скрещивании 2-х гетерозиготных особей, т.е. гибридов, анализируемых по одной паре альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу 1:2:1.

 

в) хронологически следующей предложенной закономерностью была гипотеза «чистоты гамет», ставшая в последствии IV законом Менделя. Мендель высказал положение, что в половых клетках (гаметах) находятся обособленные (дискретные) частицы, определяющие развитие того или иного признака. Это положение У. Бэтсон в 1902 г. сформулировал так: Гены в гаметах у гибридных особей находятся в единственном числе они «чисты», т.е. аллельные гены находятся в половых клетках в гаплоидном (одинарном) наборе.

г)3-ий Закон независимого комбинирования признаков (слайд 2)

- при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении (F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Расщепление по фенотипу по каждому признаку 3:1, независимо от числа признаков. Суммарная формула: (3+1)n, где n – число пар признаков, принятых во внимание при скрещивании. При анализе 2-х пар признаков, расщепление по фенотипу 9:3:3:1.

д) Статистический характер менделевских закономерностей:

Законы Г.Менделя выполняются при определенных условиях:

1) Бесконечно большое число исследуемых особей.

2) Приблизительное значение расщеплений.

3) Вероятный характер событий (достоверность 95 %) Таким образом, обнаруживаемые закономерности являются результатом воздействия многих факторов и не являются абсолютными законами природы, а носят характер статистических закономерностей.

4) Равновероятное образование в процессе мейоза обоих типов гамет (как с геном А, так и с геном а).

5) Равновероятная встреча и сочетание этих гамет при оплодотворении.

6) Равная выживаемость всех типов зигот и развивающаяся из них особей.

н) Менделирующие признаки – наследственные признаки, которые определяются аллельными генами и в потомстве расщепляются в соответствии с законами Менделя по моногенному типу. Такие признаки являются дискретными.

ж) Цитологические основы законов Г.Менделя : объяснения законов Г. Менделя были найдены при изучении процессов мейоза и гаметогенеза и сути перестроек с гомологичными хромосомами.

 

Медицинская генетика – раздел антропогенетики, изучающий наследственные болезни человека.

Наследственные болезни – болезни, причиной которых являются нарушения генотипа.

Наследственные болезни необходимо отличать от:

1) Врожденных болезней - болезней проявляющихся с момента рождения человека – наследственный генез для них не является обязательными, могут развиться во время эмбриогенеза. Среди них часто встречаются фенокопии наследственных заболеваний.

2) Семейных болезней – заболеваний, которые проявляются в нескольких поколениях в одной семье, обусловлены одинаковыми условиями жизни (туберкулёз).

 

Наследственные болезни делятся на генные болезни и хромосомные.

 

Генные болезни - (молекулярные болезни,фенотипически - это болезни обмена веществ) – заболевания, причиной которых являются генные ("точковые") мутации. Эти болезни можно выявить и прогнозировать генеалогическим и биохимическим методами. Мутантные гены передаются из поколения в поколение, в соответствии с типом наследования. Известно более 2 тысяч генных болезней.

Хромосомные болезни – заболевания, причиной которых являются хромосомные или геномные мутации.

Генные (молекулярные) болезни встречаются чаще, чем хромосомные. У человека, по данным разных авторов, от 30 тыс. до 500 тыс. генов. Любая мутация гена – изменение структурного белка или белка – фермента приводит к нарушению обмена веществ и фенотипическому проявлению болезни. Частота возникновения мутаций у человека 10-4 -10 -6

Доминантные гены со 100% пенетрантностью выявляются в первом поколении. Рецессивные патологические гены, их большинство, проявляются только в гомозиготном состоянии и заболевание может возникать через несколько поколений. Для рецессивных генов возможно проявление в каждом поколении, если они находятся в Х- хромосоме у мужчины.

 

Классификация генных болезней.

I. По проявлению:

1. Морфологические ( Браходактилия, полидактилия и .т.д.)

2. Биохимические (гемофилия, атеросклероз и т.д.)

3. Физиологические (наследственные формы гепертонической болезни, сахарного диабета; шизофрения.)

 

II. По действию на организм:

1. Полулетальные (проявляются в виде заболевания). Например,

серповидноклеточная анемия.

2. Летальные:

а) доминантные – вызывают гибель в эмбриогенезе.

б) рецессивные – в гомозиготном состоянии вызывают гибель организма в эмбриогенезе, в гетерозиготном проявляются как заболевание (талоссемия, сцепленный ихтиоз, болезнь Тея – Сакса).

 

III. По фенотипическим проявлениям (по типу нарушения обмена веществ).

(ферментопатин)

1) Нарушение в обмене аминокислот (фенилкетонурия, альбинизм, алкаптонурия).

2) Нарушение в обмене белков (гемоглобинопатия, талассемия, колагенозы, серповидно-клеточная анемия,тестикулярная феминизация, адреногенитальный синдром.)

3) Нарушения в обмене углеводов (сахарный диабет наследственные формы, галактоземия).

4) Нарушения в обмене липидов (гиперпродукция ЛПНП – липопротеидов низкой плотности, амовротическая идиотия - Болезнь Тея – Сакса.

5) Нарушение минерального обмена (подагра, болезнь Вильсона-Коновалова)

 

IV. По типу наследования:

 

1)Моногенные болезни: 1 ген – 1 фермент – 1 признак (фенилкетонурия и т. д.). Наследуется по законам Г.Менделя.

2)Полигенные болезни, определяемые несколькими аллелями, их называют мультифакторными, или болезнями с наследственно предрасположенностью (атеросклероз, шизофрения, гипертоническая болезнь, наследственные формы сахарного диабета). На их развитие значительно влияют факторы внешней среды.

Патология различных генов может приводить к однозначным фенотипическим проявлениям – такие заболевания являются генокопиями. В основе таких заболеваний лежат различные мутации, которые объясняют их неодинаковое течение.

Фенокопии – заболевания (или состояния) сходные с наследственной патологией, но ненаследственные по своей причине.

 

Хромосомные болезни:

 

Частота встречаемости 2-4% от всех наследственных заболеваний, у новорожденных – 1%, у выкидышей – 30 %, у эмбрионов – до 50 %. Большинство хромосомных болезней характеризуются множественными пороками и, следовательно, - несовместимы с жизнью – отмечаются серьезные нарушения морфологии, физиологии, биохимии, психики. Практически хромосомные болезни не наследуются, но 0,5 – 0,7% таких мутаций в половых клетках появляется вновь в каждом поколении.

 

Классифицируются хромосомные болезни по:

I. Типу клеток, в которых они возникли.

 

1. Мутации в половых (генеративных) клетках (полный мутант).

2. Мутации в некоторых бластомерах на стадии дробленияю. В результате возникает генетический мозаицизм. Клетки тканей, развивающихся из такого бластомера, имеют измененный генотип – несут мутантные гены.

 

II. По типу мутаций, являющихся причиной заболевания:

 

1. Хромосомные абберации (делеции, транслокации, дуплекации) – например, синдром кошачьего крика – делеция хромосомы 5 пары. (слайд 8), расщелина неба – 11q+, 14q+, делеция 21 пары – хронический миелолейкоз.

2. Аномалии числа хромосом:

 

а) аутосом:

- моносомия – приводит к гибели организмов на ранних стадиях развития.

- трисомия по 21 паре – синдром Дауна (слайд 7),

- трисомия группы Д - синдром Патау (слайд 3)

- трисомия группы Е – синдром Эдвардса (слайд 4)

 

б) половых хромосом:

- моносомия по Х хромосоме синдром Шершевского – Тернера (слайд 6); моносомия по У-хромосоме – гибель зиготы.

- трисомия по Х хромосоме – синдром трипло – Х;

- полисомия по Х хромосоме : синдром Клайнфельтера (слайд 5) –несколько хромосом Х (2 и более) + Y хромосома:

- полисомия по Y хромосоме: Х хромосома+Y (2 и более хромосом.)

 

Наследственные заболевания необходимо диагностировать в наиболее ранние сроки беременности, настойчивые показания к таким исследованиям в семьях с отягощенным анамнезом по наследственным заболеваниям и в случаях кровного родства супругов.

Выделяют пренатальную, неонатальную и постнатальную диагностику.

I. Пренатальную диагностику проводят при:

1 обнаружении структурных перестроек хромосом у одного из родителей,

2 при наличии у родителей доминантного наследственного заболевания,

3 при наличии в семье детей с рецессивным наследственным заболеванием, что свидетельствует о гетерозиготности родителей,

4 при возрасте матери старше 35 лет,

5 при привычных выкидышах, вызывающих подозрение на несовместимость матери и плода по эритроцитарным антигенам,

6 при наличии в семье детей с врожденными пороками развития.

 

Пренатальная диагностика должна проводится до 12-20 недель беременности, когда плод нежизнеспособен после ее прерывания.

 

Используют следующие методы пренатальной дигностики:

1) R – скопия, УЗИ (с 1957 года),фетоскопия - эндоскопическое обследование плода

2) амниоцентез для получения амниотической жидкости, содержащей продукты жизнедеятельности плода, клетки его кожи и слизистых – проводится до 15-16 недель беременности.

3) кордоцентез – забор крови из пуповидной вены под контролем УЗИ (с 80х годов ХХ в) до 12 недель беременности.

4) биопсия ворсин хориона – для забора материала для медико – генетического исследования.

Эти исследования трудоёмки, дорогостоящие, небезопасные.

В обработке полученного материала перспективными методами являются: использование ДНК - зондов, методов молекулярно – генетического анализа- ПЦР, ДНК гибридизации, обратная транскрипция ДНК с и-РНК и клонирование.

 

Неонатальная диагностика

Медико-генетическое консультирование – один из видов специализированное помощи населению, направленный в первую очередь на предупреждение появления в семье детей с наследственной патологией. Первая МГК была создана в 1932 г. г. Ленинграде – С.Н.Давиденковым.

Консультирование проводится в три этапа:

1. Уточнение диагноза(используются все вышеназванные методы).

2. Прогноз для потомства

а) проспективное консультирование – до наступления беременности или её ранние сроки (при отягощённых беременностях, при отягощённой наследственности, после воздействия мутагенов).

б) ретроспективное консультирование – после рождения ребёнка. Даётся прогноз относительно здоровья будущих детей.

3. Решение вопроса о деторождении.

Онтогенез (гр. ontos – существо, genesis - развитие)– индивидуальное развитие особи, в основе которого лежит реализация наследственной информации в определенных условиях среды.

 

Филогенез – исторический процесс развития вида.

Выделяют следующие типы онтогенеза:

I. Прямой (прямое развитие)

II. Непрямой (непрямое развитие)

При прямом онтогенезе особь после вылупления из под яйцевых оболочек или рождения похожа на взрослый организм.

Виды прямого онтогенеза:

1) Неличиночный (у рыб, пресмыкающихся, птиц и некоторых беспозвоночных, яйца которых богаты лецитином (желтком), достаточным для завершения онтогенеза).

2) Внутриутробный (у млекопитающих; развитие зародыша происходит в матке и все функции его осуществляются через материнский организм. Этот вид онтогенеза наилучшим образом обеспечивает выживание эмбриона, но новорождённые существа нуждаются некоторое время во вскармливании молоком матери).

Непрямой онтогенез (личиночный тип развития) характеризуется развитием с превращением (метаморфозом). Встречается у видов, яйца которых бедны лецитином.

Различают следующие виды метаморфоза:

1. Полный – в цикле развития имеются стадии: яйцо → личинка → куколка → имаго.

2. Неполный – в цикле развития имеются стадии: яйцо → личинка → имаго.

3. Сложный – например, у земноводных.

Из икринки образуется головастик, имеющий ряд временных органов (жабры, плавники, хвост), которые затем исчезают и у взрослых особей отсутствуют.

Взаимная связь онтогенеза и филогенеза была раскрыта И.Мюллером и Э.Геккелем в биогенетическом законе: «Онтогенез есть краткое повторение филогенеза», а позднее – в учении академика А.Н. Северцова.

Единой теории, объясняющей причины и механизм онтогенеза нет. Но уже в античном мире Гиппократ выссказал мысль о том, что в яйце или теле матери должен находиться маленький, но полностью сформированный организм. Систематические исследования онтогенеза начались в XVII веке, когда М. Мальпиги описал подробно эмбриональное развитие курицы и сделал заключение, что в яйце курицы на ранних стадиях развития уже имеется преобразованный зародыш со всеми органами и процесс развития заключается лишь в количественных изменениях. Позднее подобные выссказывания делались Левенгуком, Боннэ, Галлером и получили название – теория преформизма. В основе преформизма лежали метафизические представления о том, что никакого развития по существу нет, а идут лишь количественные накопления в заранее предшествующих частях тела.

После открытия Левенгуком анималькулей (мужских половых клеток - сперматозоидов) преформисты разделились на два лагеря: анималькулистов, считавших, что зародыш находится в мужской половой клетке и овистов – утверждавших, что зародыш заложен в яйцеклетке. Но суть их одна и не противоречила религиозным представлениям о сотворении живых существ богом. Пытаясь примирить религию и науку, Ш. Боннэ выступил с теорией «вложения», согласно которой, в яичнике зародыша уже содержатся зародыши следующего поколения, а в них – зародыши последующих и т.д. (по принципу русской куклы - матрёшки).

Отсюда приходили к выводу, что уже первая женщина, созданная согласно библейскому преданию, богом, содержала в своих яичниках зачатки всех будущих поколений человечества.

Первый удар по метафизическим представлениям преформистов нанес академик Российской академии наук К.Ф. Вольф (1759г.), который развил принцип эпигенеза, высказанный ранее Р. Декартом и В. Гарвеем.

Согласно учению об эпигенезе органы не предсуществуют, не преформированы в зародыше, а формируются заново из гомогенной массы не одновременно, а в известной последовательности. Процесс развития является эпигенезом – подлинным новообразованием.

А вот как и почему это происходит К. Вольф научно обосновать не смог и дал идеалистическое понятие о существовании «существенной силы», которая направляет развитие по тому, или иному пути. Современники К. Вольфа не поняли его учения и забыли о нём.

Согласно современным представлениям в клетках, с которых начинается онтогенез, заложена определённая программа развития организма в виде кода наследственной информации. В ходе индивидуального развития эта программа реализуется, определяя все процессы онтогенеза.

Периодизация онтогенеза.

Существует несколько схем периодизации онтогенеза, каждая из которых является наиболее подходящей для решения конкретных научных или практических задач.

У человека и высших животных общепринятым является деление онтогенеза на два этапа:

1)пренатальный (дородовый),

2)постнатальный (послеродовый).

Некоторые авторы роды называют интранатальным этапом.

С общебиологической точки зрения, важнейшим событием онтогенеза является возможность полового размножения. Поэтому онтогенез делят на периоды:

1) дорепродуктивный (ювенильный)

2) репродуктивный (пубертатный, зрелый)

3) постпродуктивный (старость)

Наиболее употребляемым в биологии является деление онтогенеза на два периода:

1) эмбриональный

2) постэмбриональный.

Некоторые эмбриологи предлагают выделять предзиготный (проэмбриональный) период. Он связан с образованием гамет. В этот период в яйцеклетках накапливаются и-РНК, р-РНК, лецитин, образуется кортикальный слой цитоплазмы, содержащий гранулы гликогена; яйцо приобретает полярность, активируется; происходит сближение гамет и слияние (сингамия)

Эмбриональный период, или эмбриогенез, начинается с образованием зиготы. Окончание этого периода при разных типах онтогенеза связано с различными моментами развития: при личиночном типе – с выходом из яйцевых оболочек; при неличиночном – с выходом из зародышевых оболочек, при внутриутробном – с моментом рождения.

Эмбриональный период делится на стадии зиготы, дробления, бластулы, гаструлы, гисто- и органогенеза. Зародыш млекопитающих и человека до образования зачатков органов (до 12 недель) принято называть эмбрионом, а в дальнейшем – плодом.

Зигота – стадия одноклеточного зародыша. Она образуется в результате слияния женской и мужской гамет. В зиготе происходит перемещения цитоплазмы, происходит интенсивный синтез белка, появляется билатеральная симметрия, лецитин или равномерно распределяется по всей цитоплазме, либо сосредотачивается ближе к одному полюсу (вегетативному), противоположный полюс более светлый называют анимальным.

Дробление – многократное митотическое деление зиготы, в результате которого, зародыш становится многоклеточным, не меняя при этом своего объема. Клетки на стадии дробления называются бластомерами. С каждым последующим дроблением бластомеры становятся меньших размеров, т.к. интерфаза на этой стадии очень короткая. Характер дробления обусловлен типом яйцеклетки, т.е. зависит от количества и распределения лецитина. Различают следующие типы дробления:

(1) Полное равномерное дробление встречается у иглокожих, ланцетника и млекопитающих, имеющих изолецитальные и алецитальные яйцеклетки. В этом случае дробится вся зигота, а образующиеся бластомеры имеют одинаковые размеры (слайд).

(2) Полное неравномерное характерно для телолецитальных яйцеклеток, например у лягушек. Бластомеры вегетативного полюса из-за обилия лецитина всегда отстают в дроблении от бластомеров анимального полюса (слайд) и поэтому более крупные, чем бластомеры анимального полюса.

(3) Неполное равномерное (поверхностное) или частичное дробление встречается у насекомых с центролецитальным типом яйцеклеток. У насекомых яйцеклетки содержат много лецитина, который расположен в центре, поэтому дробится периферическая часть зиготы. Бластомеры, образующиеся в ходе дробления, имеют одинаковые размеры (слайд).

(4) Неполное неравномерное дробление называют дискоидальным. У рыб и птиц с телолецитальным типом яйцеклеток дробится лишь часть яйца, расположенная на анимальном полюсе; происходит неполное, частичное дробление. Часть лецитина остается вне бластомеров, которые располагаются на лецитине в виде диска (слайд).

В результате ряда последовательных дроблений формируется группа клеток, тесно прилегающих друг к другу. У некоторых животных такой зародыш напоминает ягоду малины. Он получил название морулы. Для каждого вида животных дробление заканчивается на определенном количестве бластомеров. Далее между бластомерами в моруле возникают силы отталкивания, бластомеры выстраиваются в один слой, образуя бластулу.

Бластула – стадия однослойного зародыша. Начиная с бластулы клетки зародыша называют эмбриональными клетками. При полном равномерном дроблении бластула имеет форму пузырька со стенкой в один слой клеток. Этот слой назван бластодермой. Полость, ограниченная бластодермой называется первичной полостью (бластоцелью).

Стадию бластулы проходят все виды животных. У всех многоклеточных животных после образования бластулы начинается процесс гаструляции (процесс образования гаструлы). Гаструла – стадия двух- или трехслойного зародыша. Слои тела зародыша называют зародышевыми листками: энтодермой, эктодермой и мезодермой.

В процессе гаструляции выделяют два этапа:

1)образование эктодермы (наружного зародышевого листка) и энтодермы (внутреннего зародышевого листка) т.е. двуслойного зародыша

2)образование мезодермы (среднего, третьего зародышевого листка), т.е. трехслойного зародыша.

Iый этап. Способы образования двухслойного зародыша.

1)Инвагинация (впячивания) – вегетативный полюс бластулы впячивается внутрь, т.е. перемещается к анимальному полюсу. Противоположные полюса бластодермы почти смыкаются, так что бластоцель либо исчезает полностью, либо остается в виде незначительной полости, а из бластулы возникает двухслойный зародыш. Внешний слой клеток называют эктодермой, а внутренний – энтодермой. Полость называют гастроцелем, или первичной кишкой, а вход в кишку получил название бластопора, или первичного рта. Края его сближаются, образуя верхнюю и нижнюю губы (слайд).

2)Деляминация (расслоение) – клетки бластодермы делятся синхронно и параллельно её поверхности, образуя наружный и внутренний зародышевые листки.

3)Иммиграция (выселение, проникновение внутрь) – характерна для кишечнополостных. Этот способ заключается в массовом активном перемещении клеток бластодермы в бластоцель (слайд).

4)Эпиболия (обрастание) встречается у животных, имеющих телолецитальные яйца. Мелкие клетки анимального полюса, размножаясь, обрастают и покрывают снаружи крупные, богатые желтком клетки вегетативного полюса, которые становятся внутренним слоем (слайд).

Чаще всего имеет место смешанный тип гаструляции, например у земноводных.

IIой этап. Образование трёхслойного зародыша.

Различают два способа закладки мезодермы: телобластический и энтероцельный.

1)Телобластический способ встречается у многих беспозвоночных. Заключается он в том, что вблизи бластопора во время гаструляции образуется по одной крупной клетке – телобласту. В результате размножения телобластов формируется мезодерма (слайд).

2)Энтероцельный способ характерен для хордовых. В этом случае с двух сторон от первичной кишки образуются выпячивания – карманы (целомические мешки). Внутри карманов находится полость, представляющая собой продолжение первичной кишки (гастроцеля). Целомические мешки полностью отшнуровываются от первичной кишки и разрастаются между экто- и энтодермой. Клеточный материал этих участков дает начало среднему зародышевому листку – мезодерме (слайд).

Гистогенез и органогенез.

Гистогенез – процесс образования тканей.

Органогенез – процесс формирования органов.

Зародышевый материал, дифференцированный на три зародышевых листка, даёт начало всем тканям и органам зародыша.

Из эктодермыразвиваются: эпидермис кожи и его производные (перо, ногти, когти, волосы, потовые, сальные и молочные железы), компоненты органов зрения, слуха, обоняния; эпителий ротовой полости, эмаль зубов; нервная трубка, нервные клетки и образующиеся из их отростков периферические нервы. Зародыш на стадии образования нервной трубки называют нейрулой.

Из энтодермыразвиваются: эпителий желудка и средней кишки; печень; секретирующие клетки поджелудочной, желудочных и кишечных желез; эпителий легких и воздухоносных путей; секретирую­щие клетки передней и средней долей гипофиза, щитовидной и паращитовидной желез.

Производные мезодермы: костная, хрящевая и соединительная ткани; скелетная мускулатура, органы выделительной, половой, сердечно-сосудистой и лимфати­ческой систем; плевра, брюшина, перикард.

Зачаток конкретного органа формируется первоначально из определенного зародышевого листка, но затем орган усложняется и в итоге в его формировании принимают участие два или три зародышевых листка.

Органогенез завершается в основном к концу эмбрионального периода развития. Однако дифференцировка и усложнение органов продолжается и в постэмбриональном онтогенезе.

В эмбриогенезе изменяется форма тела зародыша, образуются отверстия и полости, а также формируются временные внезародышевые (провизорные) органы.

В зависимости от места развития дефинитивного (окончательного) ротового отверстия все типы животных мира принято делить на первичноротых и вторичноротых.

К первичноротым относятся организмы, у которых в процессе эмбрионального развития дефинитивное ротовое отверстие образуется на месте первичного рта – бластопора. Это все черви, моллюски и членистоногие. У вторичноротых организмов (иглокожие, погонафоры и хордовые) дефинитивный рот формируется на конце, противоположном бластопору.

 

Провизорные органы.

Провизорные (внезародышевые) органы функционируют временно и обеспечивают связь зародыша со средой. К ним относят амнион, хорион, плаценту, аллонтоис, желточный мешок и др.

У истинно наземных животных и человека, потерявших связь с водной средой, зародыш развивается в специальных оболочках. Такой оболочкой является прежде всего амнион.

Клетки амниона секретируют амниотическую жидкость, в которую погружен зародыш. Амниотическая жидкость представляет собой водный раствор белков, углеводов, минеральных солей; содержит также гормоны и мочевину. Амнион защищает зародыш от высыхания, механических воздействий; участвует в обмене веществ.

Позвоночных, обладающих амнионом (пресмыкающиеся, птицы и млекопитающие), объединяют в группу высших позвоночных – амниотов. В противоположность им низшие позвоночные, не имеющие амниона (круглоротые, рыбы, земноводные), составляют группу анамний.

Газообмен у зародышей сухопутных животных осуществляется с помощью хориона (ворсинчатой оболочки). Он является самой наружной внезародышевой оболочкой и на поверхности имеет большое число выростов - ворсинок. Ворсинки хориона врастают в слизистую оболочку матки. Место наибольшего разветвления ворсинок и наиболее тесного контакта их со слизистой оболочкой матки у млекопитающих носит название детского места или плаценты. Тело зародыша соединяется с плацентой специфическим провизорным органом - пупочным канатиком, содержащим кровеносные сосуды. Через плаценту плод снабжается питательными веществами, кислородом; освобождается от продуктов обмена.

Аллантоис, (мочевой пузырь) является производным заднего отдела кишечной трубки зародыша и представляет из себя большой мешок. Функционирует у рептилий и птиц, выполняя функции накопления конечных продуктов азотистого обмена, и участвует в обмене газов. У человека и млекопитающих животных– это рудиментарный орган, его зачаток входит в состав пупочного канатика.

Желточный мешок у птиц и рептилий закладывается раньше других провизорных органов, т.к. обеспечивает питание зародыша, соединяясь с его средней кишкой. У млекопитающих желточный мешок закладывается на ранних этапах эмбриогенеза, но затем постепенно редуцируется.

Критические периоды развития – это периоды, когда зародыш наиболее чуствителен к повреждению различными факторами т.е. – это периоды наименьшей резистентности (устойчивости) зародышей к факторам внешней среды. В критические периоды у зародышей сильно изменяется метаболизм (обмен веществ), усиливается дыхание, меняется содержание РНК, появляются новые белки, падает темп роста. У различных видов животных критические периоды отмечаются в разные сроки развития. У человека имеют значение следующие критические периоды:

1) имплантация – (6 – 7 сутки после оплодотворения)

2) плацентация – образование плаценты (конец 2ой недели беременности)

3) роды

В эти периоды происходят резкие изменения условий существования и перестройка деятельности всех систем органов.

Выделяют критические периоды для каждого органа в различные сроки (особенно в разные сроки беременности).

Тератогенные (греч. teras – урод, чудовище) факторы – это все воздействия, способные вызвать нарушения развития: аномалии, пороки, уродства.

Аномалии – это незначительные отклонения, не нарушающие функций органа (косолапость, шестипалость).

Пороки – это нарушения морфологии и функций органа средней степени, снижающие жизнеспособность (пороки сердца).

Уродства – это морфологические отклонения, уродующие организм, нарушающие функции и нередко несовместимые с жизнью (отсутствие или недоразвитие органа).

Наиболее сильными тератогенными факторами являются наркотики, алкоголь, талидомид (снотворное), недостаток кислорода, недостаток витаминов группы В, токсины паразитов, ионизирующие излучения и др.

Канцерогенные факторы среды – это воздействия, приводящие к развитию злокачественных опухолей ( различные факторы, в том числе вирусы).