I. Информационно-справочная база.

Использование технических средств в процессе моделирования

Осуществляя процесс разработки решений в диалоге с ЭВМ, пользователь простейшей системы может:

а) структуризовать любую ситуацию, возникающую в связи с разработкой решения, сопоставляя ее с проектом решения;

б) получать модифицированные результаты и их оценки, вводя в ЭВМ новые критерии и варианты, дополняя их в ходе диалога новыми значениями;

в) исследовать последствия изменений различных факторов для ранжирования вариантов решений;

г) руководитель может внести коррективы в проработанные проблемные ситуации, полагаясь на новые знания о них.

Между тем, традиционный подход к разработке решений основан по-прежнему преимущественно на интуитивных предпосылках и общих представлениях о действительности. Основные недостатки его - неточность (количественная), неоптимальность и несистемность.

Неточность количественная проявляется в том, что при обосновании решений превалируют качественные оценки (типа "лучше-хуже", "больше-меньше", "раньше-позже" и т.п.) вместо оценок с точным указанием числа и даты. Допускаются при оценках логические, информационные и вычислительные погрешности. Количественная неполноценность усугубляется их неоптимальностью, то есть отсутствием выбора вариантов принимаемого решения. В лучшем случае выбор осуществляется на основе сравнения двух-трех вариантов без указания меры предпочтительности (критерия оценки).

Отсутствие системного подхода в решении сложных хозяйственных задач характеризуется тем, что общие комплексные задачи (в частности, материально-технического снабжения) искусственно расчленяются на ряд не связанных между собой частных задач. Эти задачи легче решаются, но не содержат необходимых общих условий и целостной картины достижения цели управления процессом.

Необходимость преодоления указанных недостатков породила новую межотраслевую область знаний, использующую математику в качестве способа выражения мер и отношений между изучаемыми явлениями. Такой наукой стала теория исследования операций и систем. Возникшая в отрыве от основных идей кибернетики, теория исследования операций и систем сегодня является самостоятельным и достаточно емким разделом прикладной кибернетики (учитывая сходный характер и методы решаемых задач). Практическая значимость теории исследования операций усилилась в связи с широким проникновением в сферу управления современных средств вычислительной техники. Фактор времени, ранее обесценивавший многие математические результаты, перестал быть препятствием (хотя и сегодня математическое обеспечение является наиболее дорогостоящим в использовании ЭВМ).

Степень использования ЭВМ при разработке решений зависит от особенностей математических моделей. По направлению использования в процессе управления математические модели можно разделить на два класса: модели планирования и модели оперативного, диспетчерского управления.

Модели планирования целесообразно использовать в пакетном режиме. То есть пакет информации, связанной с разработкой плана, вводится в ЭВМ на вычислительном центре. Между лицами, принимающими решение, и ЭВМ появляются посредники: программисты (готовят программы для работы ЭВМ) и операторы (эксплуатационники ЭВМ) вычислительного центра.

Пакетный режим менее удобен при оперативном управлении, когда важно, во-первых, непосредственное взаимодействие лиц, принимающих решение, и ЭВМ; во-вторых, применение не аналитических методов (математических моделей в виде аналитических зависимостей), а специальных алгоритмических методов, позволяющих искать решения с помощью машинного эксперимента, то есть выбирать решение по имитационной модели.

Имитационные модели представляют собой запись алгоритма поиска решения методом численного анализа. Сегодня это наиболее реальный путь внедрения математических методов и ЭВМ непосредственно в работу систем управления, в разработку управленческих решений. В имитационных моделях необязательна запись модели объекта в виде математических уравнений; имитационная модель может представлять собой словесное описание операций, производимых над набором чисел (так называемая операторная форма записи); модели дают алгоритм, то есть последовательность действий, операций, осуществление которых приводит к искомому результату (конкретному решению); алгоритмические методы предлагают не столько решение, сколько способ его нахождения, что существенно расширяет их возможности по сравнению с аналитическими методами (последние выдают результат на основе решения математических уравнений с заданными критериями оптимальности и ограничениями).

Имитационные модели рассчитаны на машинную обработку. Поэтому, кроме самой модели, необходимы средства ввода ее в ЭВМ, соответствующие программы обработки данных и выдачи результатов. Единый комплекс образуют: средства ввода данных, сами данные, модели, описывающие взаимосвязь данных и манипуляции с ними, программы обработки модели, программы выдачи результатов обработки на ЭВМ.

Имитационное моделирование - это сложный участок интеллектуальной деятельности, нацеленный на решение производственных проблем с применением человеко-машинных процедур, но и чрезвычайно интересный. Путем имитационного моделирования решаются задачи проектирования объектов, выбора пропускной способности, правил управления, оценки реальности разработанных программ и планов и др.

Положительными характеристиками метода имитационного моделирования являются:

- возможность построения алгоритма любых ситуаций,

- сравнительно незначительные временные затраты на анализ ситуации,

- учет факторов внешней среды вероятностного характера,

- возможность анализа и поиска решений сложнейших производственных систем,

- решение задач производства, не поддающихся формализации,

- исключение экспериментов в производственных условиях.

Особенность моделей машинной имитации состоит в том, что нередко появляется возможность вмешиваться в процесс счета лицам, принимающим решение. Это достигается режимом диалога с ЭВМ. Здесь очень удобны дисплеи. Рекомендации по эффективному использованию ЭВМ при разработке управленческих задач состоят в следующем.

При автоматизации принятия решений актуальным является объединение разработки моделей (в том числе имитационных) с общей разработкой АСУ. Именно вследствие того, что эти две составляющие одной проблемы решаются порознь, сегодня преобладает решение задач информационных в организационных системах управления.

Любая модель служит инструментом для лиц, принимающих решение, которые должны уметь им пользоваться (от руководителей до рядовых сотрудников, диспетчеров). Это надо учитывать при разработке моделей.

Использование моделей следует заранее предусматривать, определяя методы работы в автоматизированном режиме и органическое их включение в систему.

Кроме технических проблем, возникают и психологические проблемы. При создании моделей для систем управления следует в комплексе учитывать психологические особенности людей и характеристики ЭВМ. Именно эта увязка обеспечивает создание человеко-машинного комплекса.

Не всегда пользователи моделей - специалисты по вычислительной технике и программированию, поэтому рекомендуются в подобных случаях максимально простые способы общения с ЭВМ, например, на естественном языке.

Для иллюстрации содержания выполняемых на ЭВМ действий приведен пример программной системы экономического анализа технологического процесса, в структуру которой включается:

1.1. Характеристика оборудования;

1.2. Характеристика видов продукции;

1.3. Характеристика вариантов технологических режимов.