Косвенный метод стандартизации

Таблица 6.3

Стандартизация динамики общих коэффициентов смертности населения Рос­сии за 1990—1995 гг. прямым методом

 

  Возрастные группы (лет)   Возрастные коэффициенты смертности mx, ‰   Возрастная структура населения Украины по переписи 1989 г., принятая за стандарт wx0, в долях единицы     mxwx0
0—4 3,9 4,1 0,0737 0,2874 0,3022
5—9 0,5 0,6 0,0718 0,0359 0,0431
10—14 0,4 0,5 0,0703 0,0281 0,0352
15—19 1,1 1,6 0,0690 0,0759 0,1104
20—24 1,7 2,7 0,0652 0,1108 0,1760
25—29 2,1 3,4 0,0769 0,1615 0,2615
30—34 2,7 4,6 0,0758 0,1819 0,3487
35—39 3,6 6,3 0,0727 0,2617 0,4580
40—44 5,0 8,9 0,0526 0,2630 0,4681
45 — 49 7,6 12,3 0,0626 0,4758 0,7700
50—54 10,3 17,1 0,0720 0,7416 1,2312
55—59 15,2 21,4 0,0574 0,8725 1,2284
60—64 22,0 29,7 0,0628 1,3816 1,8652
65—69 29,6 39,2 0,0393 1,1633 1,5406
70—74 45,7 51,3 0,0275 1,2568 1,4108
75—79 71,6 78,2 0,0277 1,9833 2,1661
80—84 114,4 123,2 0,0150 1,7160 1,8480
85 и старше 201,8 214,4 0,0077 1,5539 1,6509
Итого 11,2 15,0 1,0000 12,5510 15,9144

 

Теперь вычислим индексы динамики общих коэффициентов смертности в России за 1990 — 1995 гг. Индекс динамики фактических общих коэф­фициентов уже известен из предыдущего раздела. Он равен:

Индекс динамики стандартизованных коэффициентов смертности будет иным:

Хотя по условию задачи нам не известна возрастная структура на начало и конец изучаемого периода, мы можем узнать ее влияние на динамику общего коэффициента смертности. Для этого вспомним взаимосвязь трех индексов динамики общего коэффициента смертности из предыдущего раздела: Jm = Jmx x Jwx, т.е. индекс динамики фактических общих коэффи­циентов смертности равен произведению двух индексов, первый из кото­рых характеризует изменение величины общего коэффициента смертности за счет действительного изменения смертности, а второй индекс — измене­ние той же величины общего коэффициента смертности за счет изменения возрастной структуры населения. Таким образом, по двум известным элементам вышеприведенного уравнения взаимосвязи трех индексов нетруд­но определить третий индекс:

. Отсюда: 1,339/1,268 = 1,056.

Окончательный вывод: уровень смертности населения в России увеличился за 1990—1995 гг. на 26,8% (а не на 33,9%, как свидетельствует изме­нение общего коэффициента смертности), а еще 5,6% роста — результат изменения (постарения) возрастной структуры населения. Полученные прямым методом стандартизации коэффициентов результаты несколько отличаются от аналогичных результатов, полученных с помощью индекс­ного метода. Это результат грубости расчетов, их приблизительности. Но все же различия невелики.

Если в распоряжении исследователя имеются данные о возрастной структуре сравниваемых совокупностей населения, но неизвестны возрастные коэффициенты смертности и нет исходных данных для их расчета, то можно произвести стандартизацию коэффициентов косвенным мето­дом. В этом случае за стандарт принимаются возрастные коэффициенты какого-либо населения, которые можно найти в статистических справочниках.

При этом методе стандартизация производится косвенно, т.е. мы задаемся вопросом, каким было бы общее число умерших, если бы возрастные коэффициенты смертности во всех сравниваемых группах были бы одинаковыми и именно такими как в стандарт-населении (т.е. в населении, принятом за стандарт). Это рассуждение можно выразить в виде формулы: M = åМх = åPx mx, или, если эту формулу пересказать словами, она означа­ет, что общее число умерших M равно сумме умерших во всех возрастных группах åМx, которая, в свою очередь, может быть представлена в виде суммы произведений численности населения каждой возрастной группы на соответствующий ей возрастной коэффициент смертности. По условию нам известны возрастные структуры сравниваемых групп населения, но неизвестны их возрастные коэффициенты смертности. Поэтому заменяем неизвестные возрастные фактические коэффициенты смертности произво­льно подобранными (из справочника, относящимися к любому населению, о котором мы все же априори знаем, что его повозрастная смертность не слишком отличается от смертности в сравниваемых населениях). Исполь­зуя возрастные коэффициенты смертности населения, принятого за стан­дарт, получаем так называемые условные числа умерших, т. е. числа умерших, какими они были бы при условии, что повозрастная смертность во всех сравниваемых группах населения одинакова и такая, как в населении, принятом за стандарт. В виде формулы это можно изобразить таким обра­зом: М0 = åPx х тх0, где M0 ¾ условное число умерших, Рхфактические возрастные структуры сравниваемых населений, и тх0 ¾ возрастные коэф­фициенты смертности населения, принятые за стандарт. Сравнивая за­тем фактическое число умерших в каждом населении с соответствующим этому населению условным числом умерших, получаем индекс, показыва­ющий, насколько фактическая повозрастная смертность в сравниваемом населении (или группе населения) отличается от смертности стандарт-на­селения. Умножая этот индекс на общий коэффициент смертности стан­дарт-населения (т0), получаем в итоге стандартизованный коэффициент смертности для каждого сравниваемого населения. Окончательно наши рассуждения удобно выразить следующей формулой:

(6.8)

где тCТ — стандартизованный общий коэффициент смертности; Рхвозрастные группы сравниваемого населения; М — общее число умерших в сравниваемом населении; тх0возрастные коэффициенты смертности населения, принятого за стандарт, и т0общий коэффициент смертности населения, принятого за стандарт.

Но расчет самих стандартизованных коэффициентов смертности для проведения сравнений уровней смертности на самом деле вовсе не обязателен. Это, скорее всего, лишь дань привычке, уступка нашему желанию уви­деть коэффициенты смертности в привычном виде. Однако эта привычка не безобидна, так как заставляет некоторых аналитиков трактовать величи­ну стандартизованного коэффициента аналогично фактической. В этом случае нередко рассуждают так: «Фактические коэффициенты измеряют процесс неправильно, потому что их величина зависит от особенностей возрастной структуры. А стандартизованные коэффициенты (их величина) отражают уровень демографического процесса правильно, потому что они свободны от влияния возрастной структуры». Между тем величина стан­дартизованного коэффициента вовсе не характеризует уровеньсмертно­сти. Сама по себе она — условна, самостоятельного значения не имеет ни­какого(ведь она во многом зависит от особенностей возрастной структуры стандарт-населения).

Поэтому вполне можно ограничиться расчетом индексов, выражающих соотношение фактических и условных чисел умерших, с последующим сравнением между собой уже этих индексов. Представим это рассуждение в виде формулы:

 

JmСТ (6.9)

где все условные обозначения известны из предыдущей формулы. От подобного упрощения расчет станет только точнее (за счет сокращения коли­чества округлений).

В качестве примера сравним уровни смертности мужского и женского населения России в 1995 г.[122] (таблица 6.4). Общие коэффициенты смертно­сти мужского и женского населения России в 1995 г. составили соответст­венно 16,9 и 13,3‰. Отсюда определяем, что уровень смертности мужчин выше, чем женщин, на 16,9/13,3 = 1,271, т.е. на 27,1%. Это немало, но с та­кой разницей можно было бы согласиться. Однако мы догадываемся, что именно в силу более высокой продолжительности жизни женщин по срав­нению с мужчинами их возрастная структура в среднем старше аналогич­ной структуры мужского населения. Стандартизация коэффициентов смертности позволяет устранить (элиминировать) влияние различий возра­стной структуры мужского и женского населения на величину общих ко­эффициентов смертности, так сказать, уравнять их в этом отношении. Окончательный расчет по формуле будет таким:

JmСТ = 1197048 / 779467 х 1428193 / 1055541 = 1,536 х 1,353 = 2,078

Результат расчета показывает, что на самом деле смертность мужчин выше, чем смертность женщин, не на27%, а в 2,1 раза. Это уже явно ничем не оправданная и нетерпимая разница в продолжительности жизни, имеющая далеко идущие и многообразные демографические и другие социаль­ные последствия.

В заключение этого раздела хочу обратить внимание на два очень важных обстоятельства, связанных с использованием методов стандартизации коэффициентов.

Во-первых, не существует какого-либо формализованного способа выбора (подбора) стандарт-населения. Это делается на основе опыта. Подбирается население — его параметры (возрастная структура при прямом ме­тоде стандартизации — или возрастные коэффициенты смертности — при косвенном методе), — о котором априори известно, что оно по этим параметрам схоже с теми населениями, уровни демографических процессов ко­торых (любых, не обязательно только смертности) сравниваются между собой. Если сравниваются населения с резко различающимися возрастны­ми структурами, то параметры стандарт-населения выбираются таким об­разом, чтобы они были средними между параметрами сравниваемых насе­лений (предполагаемых или известных за другие годы и т.п.).