История развития ЭВМ

ЭВМ пятого поколения.

Четвертое поколение ЭВМ.

Третье поколение ЭВМ.

ЭВМ первого поколения.

История развития ЭВМ.

3.ЭВМ второго поколения.

 

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ). Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколениябыли ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.

Транзисторы

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

Третье поколение ЭВМсоздавалось на новой элементной базе – интегральных схемах (ИС).

Микросхемы

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Микропроцессор

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор– это миниатюрный мозг, работающий по программе, заложенной в его память. Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

Микро-ЭВМ относится к машинам четвертого поколения.Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколениябудут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта. Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

· 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.

· 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.

· 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).

· 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

Шестое поколение (1990–)

На ранних стадиях эволюции вычислительных средств смена поколений ассоциировалась с революционными технологическими прорывами. Каждое из первых четырех поколений имело четко выраженные отличительные признаки и вполне определенные хронологические рамки. Последующее деление на поколения уже не столь очевидно и может быть понятно лишь при ретроспективном взгляде на развитие вычислительной техники. Пятое и шестое поколения в эволюции ВТ — это отражение нового качества, возникшего в результате последовательного накопления частных достижений, главным образом в архитектуре вычислительных систем и, в несколько меньшей мере, в сфере технологий.

Поводом для начала отсчета нового поколения стали значительные успехи в области параллельных вычислений, связанные с широким распространением вычислительных систем с массовым параллелизмом. Особенности организации таких систем, обозначаемых аббревиатурой MPP (massively parallel processing), будут рассмотрены в последующих лекциях. Здесь же упрощенно определим их как совокупность большого количества (до нескольких тысяч) взаимодействующих, но достаточно автономных вычислительных машин. По вычислительной мощности такие системы уже успешно конкурируют с суперЭВМ, которые, как ранее отмечалось, по своей сути являются векторными ВС. Появление вычислительных систем с массовым параллелизмом дало основание говорить о производительности, измеряемой в TFLOPS (1 TFLOPS соответствует 1012 операциям с плавающей запятой в секунду).

Вторая характерная черта шестого поколения — резко возросший уровень рабочих станций. В процессорах новых рабочих станций успешно совмещаются RISC-архитектура, конвейеризация и параллельная обработка. Некоторые рабочие станции по производительности сопоставимы с суперЭВМ четвертого поколения. Впечатляющие характеристики рабочих станций породили интерес к гетерогенным (неоднородным) вычислениям, когда программа, запущенная на одной рабочей станции, может найти в локальной сети не занятые в данный момент другие станции, после чего вычисления распараллеливаются и на эти простаивающие станции.

Наконец, третьей приметой шестого поколения в эволюции ВТ стал взрывной рост глобальных сетей. Завершая обсуждение эволюции ВТ, отметим, что верхняя граница шестого поколения хронологически пока не определена и дальнейшее развитие вычислительной техники может внести в его характеристику новые коррективы. Не исключено также, что последующие события дадут повод говорить и об очередном поколении.