Ентропія при безперервному повідомленні
На самостоятельную работу
В задаче 2 проверить полученные результаты, написав программу расчета в Excel, MathCad.
Задача 3. Заданы ансамбли Х и Yдвух дискретных величин:
Таблица 2.3.
Случайные величины хi | 0,5 | 0,7 | 0,9 | 0,3 |
Вероятности их появления | 0,25 | 0,25 | 0,25 | 0,25 |
Таблица 2.4.
Случайные величины уj | ||||
Вероятности их появления | 0,25 | 0,25 | 0,25 | 0,25 |
Сравнить их энтропии.
Решение. Энтропия не зависит от конкретных значений случайной величины. Так как вероятности их появления в обоих случаях одинаковы, то
Н(Х) = Н(Y) = ‑ 4(0,25 log 0,25) = ‑4(1/4 log 1/4) = log 4 = 2 бита
Ранее была рассмотрена мера неопределенности выбора для дискретного источника информации. На практике в основном встречаются с источниками информации, множество возможных состояний которых составляет континуум. Такие источники называют непрерывными источниками информации.
Во многих случаях они преобразуются в дискретные посредством использования устройств дискретизации и квантования. Вместе с тем существует немало и таких систем, в которых информация передается и преобразуется непосредственно в форме непрерывных сигналов. Примерами могут служить системы аналоговой телефонной связи и телевидения.
Оценка неопределенности выбора для непрерывного источника информации имеет определенную специфику.
Во-первых, значения, реализуемые источником, математически отображаются случайной непрерывной величиной.
Во-вторых, вероятности значений этой случайной величины не могут использоваться для оценки неопределенности, поскольку в данном случае вероятность любого конкретного значения равна нулю.
Естественно, однако, связывать неопределенность выбора значения случайной непрерывной величины с плотностью распределения вероятностей этих значений.
Учитывая, что для совокупности значений, относящихся к любому сколь угодно малому интервалу случайной непрерывной величины, вероятность конечна, попытаемся найти формулу для энтропии непрерывного источника информации, используя операции квантования и последующего предельного перехода при уменьшении кванта до нуля.