Абсолютное значение энтропии жидкости.
Абсолютное значение энтропии твердых кристаллических тел.
И газообразных тел
Абсолютные значения энтропии твердых, жидких
Воспользуемся для расчета энтропии кристаллического тела уравнением II закона термодинамики:
.
Проинтегрируем уравнение в неопределенных пределах от абсолютного нуля до температуры Т:
,
.
Для расчета необходимо знать зависимость , а также , то есть энтропию твердого кристаллического тела при абсолютном нуле.
Немецкий ученый Планк сформулировал постулат, в соответствии с которым: энтропия идеальной конденсированной системы вблизи абсолютного нуля равна нулю: .
Идеальная конденсированная система – твердое тело, в кристаллической решетке которого нет дефектов, и наблюдается абсолютный порядок. Термодинамическая вероятность идеального кристалла равна единице, а энтропия равна нулю:
Постулат Планка иногда называют III началом термодинамики.
Тогда появляется возможность рассчитать абсолютные значения энтропии твердых веществ при любой температуре:
.
Абсолютное значение энтропии жидкости при температуре Т равно:
,
где – изменение энтропии кристаллического вещества в интервале температур от абсолютного нуля до температуры плавления Тпл (численно равно абсолютному значению энтропии твердого вещества при Тпл: ); ΔSпл – изменение энтропии при плавлении твердого кристаллического вещества; ΔSж. – изменение энтропии при нагревании жидкости от Тпл. до температуры Т.
Подставляем выражения для ΔSтв, ΔSпл и ΔSж:
.