Свойства определителя
Правила для вычисления определителя 3-го порядка
1. Правило параллельного переноса.
т.е. дописываем первые два столбца определителя матрицы. Далее суммируем произведения элементов главной диагонали и двух параллельных и вычитаем из них произведения элементов побочной диагонали и двух ей параллельных (над верхними элементами диагоналей проставлены соответствующие знаки).
2. Правило треугольника.
В данном правиле берется произведение элементов главной диагонали со знаком «
» и произведение элементов двух параллельных ей диагоналей, которые замыкаются треугольником до углового элемента. Из этой суммы вычитаются произведение элементов побочной диагонали и произведения элементов двух параллельных ей диагоналей, которые замыкаются треугольником до угловых элементов.
Определение: Матрица называется вырожденной или особенной, если ее определитель равен нулю.
Все свойства определителя следуют из определения определителя и свойств конечных сумм, приводятся без общих доказательств с демонстрацией на примере определителей 2-го и 3-го порядков.
Свойство 1. Равноправность строк и столбцов. Определитель не меняет своего значения при замене всех его строк соответствующими столбцами
(11.4)
Т.е. .
Для доказательства этого свойства достаточно вычислить определители в левой и правой частях равенства и убедиться в равенстве полученных при этом членов.
В связи с этим свойством в дальнейшем вместо слов «строка» или «столбец» будем говорить просто «ряд», подразумевая их равноправность.
Свойство 2. При перестановке двух параллельных рядов определителя его модуль сохраняет прежнее значение, а знак меняется на противоположный
Пример: .
Для доказательства этого свойства достаточно вычислить по правилу треугольника определители, стоящие в правой и левой частях равенства.
Следствие 1: Определитель с двумя одинаковыми рядами равен нулю.
Действительно, при перестановке двух одинаковых рядов абсолютное значение определителя не изменится, а, с другой стороны, в силу свойства 2 изменит знак на противоположный, т.е. , значит
, следовательно,
.
Следствие 2. Сумма произведений элементов какого либо ряда на алгебраические дополнения параллельного ряда равна нулю.
Действительно, все такие разложения представляют из себя определители, содержащие два одинаковых ряда:
Свойство 3. Общий множитель элементов какого либо ряда можно выносить за знак определителя.
.
Действительно, поскольку определитель можно вычислить, раскладывая его по элементам строки (столбца), вычислим определитель, раскладывая его по элементам строки, умноженной на число , тогда каждое слагаемое будет содержать множитель
, который может быть вынесен за скобку.
Следствие 1. Если все элементы какого-либо ряда равны нулю, то определитель равен нулю.
Следствие 2. Если все элементы какого-либо ряда определителя пропорциональны соответствующим элементам параллельного ряда, то определитель равен нулю.
Действительно,
Свойство 4. Линейное свойство определителя. Если в определителе -го порядка некоторая
-ая строка представляет собой сумму двух слагаемых, то определитель может быть представлен в виде суммы двух определителей. Первый определитель будет иметь в
-ой строке первые из упомянутых слагаемых , элементы в остальных строках будут такими же, как и в исходном определителе, а второй определитель в
-ой строке будет иметь вторые из упомянутых слагаемых, а остальные строки будут совпадать с исходным определителем, т.е.
.
Это свойство следует из определения определителя, если разложить его по элементам -ой строки, а затем воспользоваться распределительным законом суммы.
Определение. Элементарными преобразованиями матрицы называются следующие преобразования:
1) умножение строки (столбца) на число отличное от нуля;
2) прибавление к одной строке (столбцу) другой строки (столбца);
3) перестановка строк (столбцов).