Размножение клеток.

 

С синтезом веществ протоплазмы и ростом теснейшим образом связано размножение клеток, осуществляющееся путём деления. Основная и универсальная форма деления клеток – митоз, непрямое деление, или кариокинез.

При митозе происходит сложная реорганизация ядра и цитоплазмы, которая в наиболее полной форме приводит к образованию двух дочерних клеток, подобных исходной материнской. В процессе митотического деления различают 4 основные стадии: профазу, метафазу(стадия материнской звезды), анафазу(стадия дочерних звёзд) и телофазу. К началу деления животные клетки обычно округляются; центриоли начинают отдаляться друг от друга; цитоплазма между ними приобретает фибриллярное строение; вокруг центриолей путём образования радиально расположенных нитчатых структур образуется лучистое сияние - астросфера. Вскоре центриоли оказываются у двух противоположных полюсов клетки, а фибриллярно структурированная цитоплазма вытягивается между ними в ахроматиновое веретено; распространяющееся от полюсов лучистое сияние доходит до переферии клетки. Сущность митоза состоит в преобразовании ядерного аппарата. При переходе интеркинетичекого ядра в стадию профазы в нём вместо глыбок хроматинового материала становятся микроскопически видимыми нитчатые образлвания – хромосомы. Во многих случаях на этой стадии по длине хромосом обнаруживаются варикозные, интенсивно окрашивающиеся утолщения – хромомеры имеющие в каждой хромосоме определённую форму и расположение.

В течение профазы происходит укорочение хромосом до 1/10 –1/20 первоначальной длины при одновременном их утолщении – спирализация хромосом – результат спирального скручивания входящих в состав хромосом тончайших нитей –хромонем. После спирализации хромомерная структура становится незаметной, и хромосомы превращаются в равномерно окрашивающиеся тела, состоящие из двух продольно сложенных, но не всегда различимых половин – хроматид. В это же время исчезает оболочка ядра и растворяется ядрышко. На стадии метафазы хромосомы располагаются в экваториальной плоскости клетки, образуя фигуру материнской звезды или экваториальную пластинку; на этой стадии особенно легко определяются число и форма хромосом. Установлено что во всех делящихся соматических клетках данного животного организма или спорофита у растений с чередованием поколений, как правило, имеется двойной – диплоидный набор различных по форме и величине хромосом. В зрелых половых клетках хромосом одинарный (гаплоидный набор или геном). Диплоидный набор хромосомявляется результатом соединения при оплодотворении хромосомных комплексов женской и мужской половых клеток. Таким образом, в диплоидном наборе каждый сорт хромосом представлен двумя гомологичными хромосомами материнского и отцовского происхождения. У разных видов количество хромосом сильно варьирует. Минимальное количество хромосом у аскариды – 1пара; у ракообразных имеется 200 хромосом. В тканях человека насчитывается, по данным одних авторов, 23, других – 24 пары хромосом.

Важнейшей структурной частью каждой хромосомы является маленький слабо окрашивающийся участок – центромера, или кинетическое тельце. При расщеплении хромосомы на 2 хроматиды этот участок также раздваивается . при достижения хромосомами экваториальной плоскости веретена центромера оказывается местом прикрепления нитей, идущих от полюса веретена, - хромосомных нитей. При этом к центромере одной хроматиды прикрепляется хромосомная нить от одного полюса, а к центромере другой хроматиды той же хромосомы – нить от противоположного полюса. Хромосомные нити распологаются на переферии веретена, остальные нити веретена идут от полюса к полюсу клетки, не прерываясь. В стадии анафазы хроматиды каждой хромосомы начинают расходиться к своим полюсам; образуются две группы направляющихся к полюсам хромосом – дочерние звёзды. На последней стадии – телофазе – происходит реконструкция интеркинетического ядра. Хромосомы в результате деспирализации вновь удлиняются и утончаются, становясь плохо различимыми. Определённые участки хромосом остаются в интеркинетическом ядре спирализированными и удерживают большие количества ДНК - гетерохроматиновые участки; они имеют вид глыбок хроматина. Кариосомы представляют собой крупные скопления гетерохроматина. Деспирализующиеся участки хромосом – эухроматиновые участки – бледно окрашиваются и становятся плохо различимыми. В телофазе восстанавливается ядерная оболочка и ядрышко. Способ возникновения этих структур неясен; предполагают, что в формировании ядрышек участвуют особые, так называемые ядрышковые, хромосомы. Веретено и астросфера претерпевают обратное развитие. По экватору клетки образуется кольцевая перетяжка, приводящая к отделению дочерних клеток друг от друга(плазматомия).

В процессе митоза митохондрии и аппарат Гольджи более и менее равномерно распределяются между дочерними клетками. Если аппарат Гольджи имеет компактную форму, то в начале деления он предварительно распадается на отдельности (диктиосимы), из которых в дочерних клетках вновь реконструируется исходная структура аппарата (диктиокинез).

В период митоза у дифференцированных клеток выполнение специализированных функций, например выработка секрета, обычно прерывается. Могут на это время исчезать, а затем восстанавливается, некоторые специальные структуры и включения, например реснички в мерцательных клетках, гранулы секрета в железистых.

В клетках высших растений митоз протекает без участия центросом и без образования астросфер (анастральный тип); различные отклонения от описанной схемы могут наблюдаться у простейших (например, у инфузорий при делении микронуклеуса ахроматиновое веретено располагается внутри ядерной оболочки), однако сущность митотического деления –это совершенно точное распределение хромосомного материала между дочерним ядрами путём продольного расщепления хромосом и последующего расхождения их половин к разным полюсам материнской клетки – во всех случаях одинакова. Значение митоза и смысл его общебиологического распространения могут быть поняты в настоящее время только на основе хромосомной теории наследственности, согласно которой хромосомы являются носителями факторов наследственности – генов, каждый из которых принимает специфическое участие в изменении веществ в клетке. Для нормального развития и функционирования организма необходим полный набор генов, а следовательно и полный набор хромосом, т.к. каждая хромосома содержит лишь определённую часть генов данного организма. Гены расположены в линейном порядке вдоль оси хромосомы; гомологичные хромосомы имеют ассортимент генов одинокого назначения. Ряд фактов заставляет предположить, что специфичность каждого гена определяется специфичностью входящих в состав хромосомы молекул ДНК (и их частей), связанных с основным белком. Молекулы ДНК состоят из двух спирально свёрнутых нитей (Уотсон и Крик); каждая нить представляет собой высокополимерное соединение, построенное из множества элементарных частиц ДНК – нуклеидов; имеется 4 вида нуклеотидов, которые различаются структурой своих азотистых оснований; специфичность молекулы ДНК обусловлены своеобразием в чередовании различных нулеотидов.

Размножение клеток предполагает умножение генного материала и равное распределение его между дочерними клетками. Первая осуществляется путем построения – редупликации новых аналогичных генных макромолекул. Редупликация, по-видимому, происходит в конце интеркинеза. Точное распределение генов между клетками достигается митозом благодаря продольному расщеплению каждой хромосомы на две одинаковые дочерние хроматиды.

Особой формой митозаявляется деление, связанным с образованием половых клеток – мейоз. У всех многоклеточных животных ,ряда простейших и у низших растений мейоз непосредственно предшествует образованию половых клеток. У остальных организмов он может осуществляется на других фазах жизненного цикла. Мейоз состоит из 2-х последовательно протекающих делений, в результате которых из диплоидных ооцитов и сперматоцитов 1- ого порядка образуются яйцевые клетки и сперматозоиды с гаплоидным набором хромосом. Достигается это тем, что впрофазепервого мейотического деления происходит сближение- конъюгация гомологичных хромосом, а затем в анафазепервого мейотического деления к каждому полюсу отходят по одной целой хромосоме от каждой гомологичной паре. В анафаз 2-ого мейотического деления к полюсам расходятся хроматиды от каждой хромосомы. Таким образом, переход диплоидного набора хромосом к гаплоидному осуществляется уже при первом мейотическосм делении (в некоторых случаях расхождение гомологичных хромосом происходит при 2-м мейотическом делении).