Уравнение состояния идеального газа
Состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением , объемом
и температурой
. Между этими параметрами существует определенная связь, называемая уравнением состояния, которое в общем виде задается выражением
,
где каждая переменная является функцией двух других.
Французский физик и инженер Б. Клапейрон объединил законы Бойля-Мариотта, Гей-Люссака и Шарля, и вывел уравнение состояния идеального газа. Пусть некоторая масса газа занимает объем , имеет давление
и находится при температуре
. Эта же масса газа в другом состоянии характеризуется параметрами
,
,
(рис. 4).
Переход из состояния 1 в состояние 2 происходит в виде двух процессов: 1) изотермического (изотерма
), 2) изохорного (изохора
).
Согласно законам Бойля- Мариотта и Шарля:
, (12)
. (13)
Исключив из уравнений (12) - (13) , получим
.
Так как состояния 1 и 2 выбраны произвольно, то для данной массы газа величина остается постоянной, то есть
. (14)
Выражение (14) является уравнением Клапейрона. Здесь – газовая постоянная, различная для разных газов.
Русский ученый Д.И. Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (14) к одному молю, используя молярный объем . Согласно закону Авогадро, при одинаковых
и
моли всех газов занимают одинаковый молярный объем
, поэтому газовая постоянная
будет одинаковой для всех газов. Эта постоянная обозначается
и называется молярной газовой постоянной, она равна
. (15)
Уравнению
(16)
удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, или уравнением Клапейрона- Менделеева.
От уравнения (16) для моля газа можно перейти к уравнению Клапейрона – Менделеева для произвольной массы газа. Если при некоторых заданных давлении и температуре один моль газа занимает молярный объем , то при тех же условиях масса
газа займет объем
, где
– молярная масса газа. Уравнение Клапейрона – Менделеева для массы
газа
. (17)
Часто используют другую форму уравнения состояния идеального газа, вводя постоянную Больцмана:
. (18)
Используя , запишем уравнение состояния идеального газа (16) в виде
Таким образом, из уравнения
(19)
следует, что давление идеального газа при данной температуре прямо пропорционально концентрации его молекул (или плотности газа).