Доказательство.
Пусть
По теореме Лагранжа: f(x) – f(x1) = f¢(e)(x – x1), где x < e < x1.
Тогда: 1) Если х < x1, то e < x1; f¢(e)>0; f¢(e)(x – x1)<0, следовательно
f(x) – f(x1)<0 или f(x) < f(x1).
2) Если х > x1, то e > x1 f¢(e)<0; f¢(e)(x – x1)<0, следовательно
f(x) – f(x1)<0 или f(x) < f(x1).
Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.
Доказательство теоремы для точки минимума производится аналогично.
Теорема доказана.
На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:
1) Найти критические точки функции.
2) Найти значения функции в критических точках.
3) Найти значения функции на концах отрезка.
4) Выбрать среди полученных значений наибольшее и наименьшее.
Исследование функции на экстремум с помощью
производных высших порядков.
Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.
Теорема. Если f¢(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1)<0 и минимум, если f¢¢(x1)>0.