Таламус.

Таламус (зрительный бугор) представляет собой парный ядерный комплекс, занимающий преимущественно дорсальную часть промежуточного мозга. Таламус составляет основную массу (около 20 г) промежуточного мозга, наибольшее развитие имеет у человека. В таламусе выделяют до 40 парных ядер, которые в функциональном плане можно разделить на следующие три группы: релейные, ассоциативные и неспецифические. Все ядра таламуса в разной степени обладают тремя общими функциями — переключающей, интегративной и модулирующей.

 

Из релейных ядер наиболее известны функции тех из них, которые входят в анализаторы.

Латеральное коленчатое тело является реле для переключения зрительной импульсации в затылочную кору (в поле 17), где она используется для формирования зрительных ощущений. Кроме корковой проекции, часть зрительной импульсации направляется в верхние бугры четверохолмия. Эта информация используется для регуляции движения глаз, в зрительном ориентировочном рефлексе. Медиальное коленчатое тело является реле для переключения слуховой импульсации в височную кору задней части сильвиевой борозды (извилины Гешля, поля 41, 42).

 

К ассоциативным ядрамталамусаотносятся ядра подушки, медиодорсальное ядро и латеральные ядра — дорсальное и заднее. Волокна к этим ядрам приходят не от проводниковых путей анализаторов, а от других ядер таламуса. Эфферентные выходы от этих ядер направляются главным образом в ассоциативные поля коры. Главной функцией этих ядер является интегративная функция, которая выражается в объединении деятельности как таламических ядер, так и различных зон ассоциативной коры полушарий мозга.

Неспецифические ядрасоставляют эво-люционно более древнюю часть таламуса, включающую интраламинарную ядерную группу.

Неспецифические ядра имеют многочисленные входы как от других ядер таламуса, так и внеталамические: по латеральному спиноталамическому, спиноретикуло-таламическому трактам

 

Гипоталамус.

Гипоталамус является вентральной частью промежуточного мозга. Макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. Микроскопически в гипоталамусе выделяют, по данным разных авторов, от 15 до 48 парных ядер, которые подразделяются на 3—5 групп. Многие авторы выделяют в гипоталамусе 4 основные области, включающие в себя несколько ядер

• преоптическая область — медиальное и латеральное преоптические ядра;

• передняя область — супрахиазматическое, супраоптическое, паравентрикулярное и переднее гипоталамическое ядра;

• средняя (или туберальная) область —дорсомедиальное, вентромедиальное, аркуатное (инфундибулярное) и латеральное гипоталамические ядра;

• задняя область — супрамамиллярное, премамиллярное, латеральное и медиальное мамиллярные ядра, заднее гипоталамическое и перифорниатное ядра, субталамическое ядро Луиса.

Важной физиологической особенностью гипоталамуса является высокая проницаемость его сосудов для различных веществ, в том числе и для крупных полипептидов. Это обусловливает большую чувствительность гипоталамуса к сдвигам во внутренней среде организма и способность реагировать на колебания концентрации гуморальных веществ. В гипоталамусе по сравнению с другими структурами головного мозга имеются самая мощная сеть капилляров (1100—2600 капилляров/мм2) и самый большой уровень локального кровотока.

Ядра гипоталамуса образуют многочисленные связи друг с другом (ассоциативные), с парными одноименными ядрами противоположной стороны (комиссуральные), а также с выше- и нижележащими структурами ЦНС (проекционные). Главные афферентные пути гипоталамуса идут от лимбической системы, коры больших полушарий, базальных ганглиев и ретикулярной формации ствола. Основные эфферентные пути гипоталамуса идут в ствол мозга — его ретикулярную формацию, моторные и вегетативные центры, в вегетативные центры спинного мозга, от мамиллярных тел к передним ядрам таламуса и далее в лимбическую систему, от супраоптического и паравентрикулярного ядер к нейрогипофизу, от вентромедиального и инфундибулярного ядер к аденогипофизу, а также имеются эфферентные выходы к лобной коре и полосатому телу.

Гипоталамус является многофункциональной системой, обладающей широкими регулирующими и интегрирующими влияниями. Однако важнейшие функции гипоталамуса трудно соотнести с его отдельными ядрами. Как правило, отдельно взятое ядро имеет несколько функций, а отдельно взятая функция локализуется в нескольких ядрах. В связи с этим физиология гипоталамуса рассматривается обычно в аспекте функциональной специфики его различных областей и зон.

Гипоталамус является важнейшим центром интеграции вегетативных функций, регуляции эндокринной системы, теплового баланса организма, цикла «бодрствование – сон» и других биоритмов; велика его роль в организации поведения (пищевого, полового, агрессивно-оборонительного), направленного на реализацию биологических потребностей.

 

Физиология мозжечка

Мозжечок отдел головного мозга, образующий вместе с мостом задний мозг. Составляя 10 % массы головного мозга, мозжечок включает в себя более половины всех нейронов ЦНС. Это свидетельствует о больших возможностях обработки информации и соответствует главной функции мозжечка как органа координации и контроля сложных и автоматизированных движений. В осуществлении этой функции важную роль играют обширные связи мозжечка с другими отделами ЦНС и рецепторным аппаратом.

Выделяют три структуры мозжечка, отражающие эволюцию его функций.

Древний мозжечок (архицеребеллум) состоит из клочка и узелка (флоккулонодулярная доля) и нижней части червя. Он гомологичен мозжечку круглоротых, передвигающихся в воде с помощью змеевидных движений тела.

Старый мозжечок (палеоцеребеллум) включает в себя верхнюю часть червя и парафлоккулярный отдел. Он гомологичен мозжечку рыб, передвигающихся с помощью плавников.

Новый мозжечок (неоцеребеллум) состоит из полушарий и появляется у животных, передвигающихся с помощью конечностей.

Межнейронные связи в коре мозжечка, его афферентные входы и эфферентные выходы многочисленны. Грушевидные нейроны (клетки Пуркинье), образующие средний (ганглиозный) слой коры, являются главной функциональной единицей. Ее структурной основой являются многочисленные ветвящиеся дендриты, на которых в одной клетке может быть до 100 тыс. синапсов. Количество клеток Пуркинье у человека, по разным источникам, — от 7 до 30 млн. Они являются единственными эфферентными нейронами коры мозжечка и непосредственно связывают ее с внутримозжечковыми и вестибулярными ядрами. В связи с этим функциональное влияние мозжечка существенным образом зависит от активности клеток Пуркинье, что в свою очередь связано с афферентными входами этих клеток.

Поскольку клетки Пуркинье являются тормозными нейронами (медиатор ГАМК), то с их помощью кора мозжечка оказывает тормозное эфферентное влияние на мишени иннервации. В мозжечке доминирует тормозный характер управления.

Двигательные функции мозжечказаключаются в регуляции мышечного тонуса, позы и равновесия, координации позы и выполняемого целенаправленного движения, программировании целенаправленных движений.

 

Физиология лимбической системы.

Под лимбической системой понимают функциональное объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма. В эволюционном аспекте лимбическая система сформировалась в процессе усложнения форм поведения организма, перехода от жестких, генетически запрограммированных форм поведения к пластичным, основанным на обучении и памяти.

 

В более узком понимании в лимбическую систему включают образования древней коры (обонятельная луковица и бугорок, периамигдалярная и препириформная кора), старой коры (гиппокамп, зубчатая и поясная извилины), подкорковые ядра (миндалина, ядра перегородки). По отношению к гипоталамусу и ретикулярной формации ствола этот комплекс рассматривается как более высокий уровень интеграции вегетативных функций. В настоящее время преобладает понимание лимбической системы в более широком плане: кроме вышеназванных структур, в нее также включают зоны новой коры лобной и височной долей, гипоталамус и РФ среднего мозга.

Получая информацию о внешней и внутрен­ней среде организма, лимбическая система после сравнения и обработки этой информации запускает через эфферентные выходы вегетативные, соматические и поведенческие реакции, обеспечивающие приспособление организма к внешней среде и сохранение внутренней среды на определенном уровне.

 

Лимбическую систему иногда называют «висцеральным мозгом». Эта функция осуществляется преимущественно через деятельность гипоталамуса, который является диэнцефалическим звеном лимбической системы. О тесных эфферентных связях лимбической системы (через гипоталамус) с внутренними органами свидетельствуют разнообразные изменения их функций при раздражении лимбических структур, особенно миндалины. При этом эффекты имеют различный знак в виде активации или угнетения висцеральных функций: происходит повышение или понижение частоты сердечных сокращений, моторики и секреции желудка и кишечника, секреции различных гормонов аденогипофизом (особенно АКТГ и гонадотропинов).

Велика роль лимбической системы в формировании эмоциональных состояний организма.

Исключительны когнитивные функции лимбической системы, особенно ее участие в формировании памяти и обучения.

Среди структур лимбической системы, ответственных за память и обучение, весьма важную роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность необходима для консолидации памяти — перехода кратковременной памяти в долговременную. Повреждение гиппокампа у человека вызывает резкое нарушение усвоения новой информации, образования долго­временной памяти.

Электрофизиологической особенностью гиппокампа является то, что в ответ на сенсорное раздражение, стимуляцию ретикулярной формации и заднего гипоталамуса в гиппокампе развивается синхронизация электрической активности в виде тета-ритма (4— 7 Гц). При этом в новой коре, напротив, возникает десинхронизация в виде бета-ритма (14—30 Гц). Пейсмекером тета-ритма считают перегородку, ее медиальное ядро. Вопрос о поведенческих проявлениях гиппокампального тета-ритма до сих пор не решен. Его считают индикатором участия гиппокампа в ориентировочных рефлексах, реакциях внимания, настороженности, развитии эмоционального напряжения. Однако большинство исследователей считают, что он связан с обработкой мозгом информации и организацией памяти. Другой электрофизиологической особенностью гиппокампа является его уникальная способность на стимуляцию отвечать длительной (в течение часов, дней и даже недель) посттетанической потенциацией, которая приводит к облегчению синаптической передачи и является основой формирования памяти. Ультраструктурным проявлением участия гиппокампа в процессах памяти является увеличение числа шипиков на дендритах его пирамидных нейронов, что свидетельствует об усилении синаптической передачи возбуждающих и тормозных влияний.