Дифференциальное исчисление.

§1. Понятие производной функции.

 

Пусть функция определена и непрерывна на промежутке X.

Возьмем точку . Дадим аргументу x приращение так, чтобы . Тогда функция получит приращение .

Опр. Производной функции в данной точке называется предел отношения приращения функции к приращению аргумента при стремлении последнего к нулю (если этот предел существует):

 

Производную функции обозначают также , . Нахождение производной функции называется дифференцированием этой функции.

 

Выясним геометрический смысл производной. Проведем секущую АВ. Из следуют соотношения: .

При точка В будет двигаться по дуге к т. А, и секущая АВ будет стремиться к положению касательной, т.е.

,

где - угол между касательной к графику в т. и положительным направлением оси Ох. Таким образом, в геометрическом смысле производная функции в точке представляет собой угловой коэффициент (тангенс угла наклона) касательной, проведенной к графику функции в этой точке.

Пример 1.Найти производную функции у=х.

Решение. Для любой точки найдем производную:

.

 

Пример 2. Найти производную функции .

Решение. Для любой точки найдем производную:

 

Аналогично можно найти производные всех основных элементарных функций.