Фильтрационный поток от нагнетательной скважины к эксплуатационной
Метод суперпозиции (потенциалов)
Решение задач будем строить методом суперпозиции (наложения) потоков и методами теории функций комплексного переменного.
Метод суперпозиции заключается в следующем.
а б Рис. 7.2. Схема векторного сложения скоростей фильтрации в произвольной точке М при работе нескольких источников и стоков |
При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.7.2b).
Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 7.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал
, (7.1)
где i – номер скважины; ri– расстояние между некоторой точкой пласта М и центром скважины под номером i.
Пользуясь методом суперпозиции, определяем потенциал сложного потока:
, (7.2)
где .
Зависимость (7.2) физически означает, что фильтрационные потоки от работы каждого источника-стока накладываются друг на друга. Так как. пласт предполагается неограниченным, то потенциал на бесконечности равен бесконечности. В центрах стоков-источников (ri=0) потенциал также равен бесконечности.
Если жидкость несжимаема, то в зависимости (7.2), вместо массовых дебитов, можно использовать объёмные дебиты Q.
Для определения уравнений эквипотенциальных поверхностей (изобар) следует иметь в виду, что во всех точках этих кривых значение потенциала (давления) должно оставаться неизменным. Таким образом, приравнивая (7.2) к некоторой постоянной, получаем:
, (7.3)
где П – знак произведения; С1 – постоянная.
Если дебиты всех скважин равны по величине, то
, (7.4)
где обозначение sign означает знак параметра Gi .
Линии тока образуют семейство кривых, ортогональных изобарам.
Метод суперпозиции можно использовать не только в бесконечных пластах, но и в пластах, имеющих контур питания или непроницаемую границу произвольной формы. В этом случае для выполнения тех или иных условий на границах вводятся фиктивные стоки или источники за пределами пласта. Фиктивные скважины, в совокупности с реальными, обеспечивают необходимые условия на границах, и задача сводится к рассмотрению одновременной работы реальных и фиктивных скважин в неограниченном пласте. Данный метод называется методом отображения источников и стоков.
Формула (7.2) – основная в решении задач интерференции скважин. Рассмотрим применение этой формулы в случаях: фильтрационного потока от нагнетательной скважины к эксплуатационной; пласта с произвольным контуром питания, но удалённым от скважин и пласта с прямолинейным контуром питания.
Рис. 7.3. Схема расположения источника 01 и стока 02 |
Пусть сток О1 и источник О2 равнодебитны, т.е. имеют одинаковые по модулю массовые дебиты G. Расстояние между источником и стоком равно 2а. Исследуем поток от источника к стоку.
Проведём ось 0х через точки О1 и О2 таким образом, чтобы точка О1находилась от начала координат 0 на расстоянии а1, а точка О2на расстоянии а2(рис. 7.3).
По формуле (7.2) определим потенциальную функцию потока. При этом учтем знаки дебитов: источник G 1= - G, а сток G 2= + G. После подстановки получим
, (7.5)
где r1 и r2– расстояния любой точки пласта до стока и источника, соответственно.
Уравнение изобар (7.4) при этом будет иметь вид
(7.6)
Рис. 7.4. Фильтрационное поле источника и стока |
и соответствует окружностям, центры которых расположены на прямой, проходящей через центры скважин (рис.7.4). Среди окружностей есть одна, имеющая бесконечно большой радиус – прямая, которая делит расстояние между скважинами и всю плоскость течения пополам. Половина всех окружностей конечного радиуса расположена по одну сторону от этой прямой, остальные окружности - по другую.
Семейство линий тока ортогонально изобарам и, следовательно, в данном случае тоже окружности. Все линии тока проходят через сток и источник. Центры всех окружностей линий тока расположены на прямой, делящей расстояние между стоком и источником пополам (рис.7.4).
Массовый дебит эксплуатационной и нагнетательной скважин при их совместной деятельности определяется на основе соотношения (7.5), расписанного для каждой скважины при учете отношений радиусов (рис.7.3): на контуре эксплуатационной скважины – ; на контуре нагнетательной скважины – . Решая, полученную систему уравнений, имеем
. (7.7)
Массовая скорость фильтрации в любой точке пласта M (рис.7.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока
Модуль массовой скорости i-ой скважины равен
, (7.8)
/ , /
Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, то есть по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, прошедшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.
Чтобы решить указанную задачу, выразим скорость в (7.8) через производную расстояния по времени и, поместив начало координат в сток О1,проинтегрируем полученное уравнение по хот х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью
. (7.9)
Время обводнения Т, т.е. время прохождения частицы расстояния О1О2= 2а определится из (7.9), если принять х=0; х0=2а
, (7.10)
где Q- объёмный дебит.
Зная Т, можно найти площадь обводнения w, приравнивая объёмы TQ и mhw. Откуда . (7.11)
Анализ формул (7.9) и (7.10) показывает, что расстояние, пройденное частицей за время Тот нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.