Ортогонализация Шмидта

 

Теорема: пусть задан базис . Тогда существует ортонормированный базис (ОНБ) такой, что ЛО его и заданного базиса равны, т.е.

приkn

Доказательство:

Пусть , положим

Тогда:

и ,т.е. ортогонален как и , так и . По аналогии методом математической индукции читателю предлагается самостоятельно установить, что всякий элемент в базисе Шмидта ортогонален всем предыдущим , и поэтому базис - ортогональный.