При формировании выборки используются вероятностные (случайные) и невероятностные (неслучайные) методы.
Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной. Если эта вероятность неизвестна, то выборка называется невероятностной. К сожалению, в большинстве маркетинговых исследований из-за невозможности точного определения размера совокупности не представляется возможным точно рассчитать вероятности. Поэтому термин «известная вероятность» скорее основан на использовании определенных методов формирования выборки, чем на знании точных размеров совокупности.
Вероятностные методы включают в свой состав: простой случайный отбор, систематический отбор, кластерный отбор и стратифицированный отбор.
Простой случайный отбор предполагает, что вероятность быть избранным в выборку известна и является одинаковой для всех единиц совокупности. Вероятность быть включенным в выборку определяется отношением объема выборки к размеру совокупности.
Простой случайный отбор может осуществляться с помощью следующих методов: формирования выборки вслепую и с помощью таблицы случайных чисел.
При использовании метода формирования выборки вслепую единицы совокупности в соответствии с их фамилиями, названиями или другими признаками вносятся в карточки, которые в перемешанном виде помещаются в какую-то непрозрачную емкость (ящик, коробку и т.п.). Из данной емкости кто-то случайным образом вытягивает число карточек, определяемое объемом выборки.
В таблицах случайных чисел содержатся числа, порядок включения которых в таблицу осуществлен случайным образом. Единицам совокупности присваивают порядковые номера. В таблице случайных чисел выбирают любую начальную точку и, двигаясь в произвольном направлении и произвольно меняя направление движения, выбирают необходимое количество номеров из числа присвоенных, равное заранее установленному объему выборки.
Использование простого случайного отбора гарантирует, что каждая единица совокупности известна и имеет равные шансы быть включенной в выборку.
Однако чтобы можно было эти методы использовать, необходимо предварительно определить каждую единицу совокупности, что при больших размерах совокупности сделать достаточно сложно, а порой и невозможно.
Данный недостаток существенно снижается при использовании компьютера для присвоения единицам совокупности номеров и формирования выборки. При телефонном интервью компьютер может генерировать случайным образом телефонные номера: он имеет генератор случайных чисел.
Начальная часть метода систематического отбора соответствует начальной части метода простого случайного отбора: необходимо получить полный список единиц генеральной совокупности.
Однако далее вместо присвоения порядковых номеров используется показатель «интервал скачка», рассчитанный как отношение размера совокупности к объему выборки. Например, если используется телефонный справочник и интервал скачка был определен равным 250, то это означает, что каждый 250-й телефонный номер включается в выборку. Однако для определения начальных страницы и колонки справочника используются случайные числа.
Очевидно, что данный метод является более экономичным и быстрым по сравнению с методом простого случайного отбора. Случайные числа используются только на начальной стадии его реализации. Вместе с тем такой метод дает менее репрезентативные результаты по сравнению с методом простого случайного отбора.
Особенно широко метод систематического отбора используется, когда для различных видов совокупностей имеются различные справочники, списки, спецификации и т.п. материалы.
Другим методом вероятностного отбора является кластерный отбор, основанный на делении совокупности на подгруппы, каждая из которых представляет совокупность в целом. Базовая концепция данного метода очень похожа на базовую концепцию метода систематического отбора, однако реализация этой концепции осуществляется по-другому. Предположим, что исследуется мнение населения какого-то региона относительно марки какого-то товара.
Регион разбивается на четко определяемые части (кластеры), например области. Исследователь может считать, что выделенные кластеры являются идентичными и мнение населения этих областей характерно для региона в целом. Далее одна из областей (один кластер) выбирается случайным образом, определяется совокупность для этой области, в ней проводится соответствующее исследование, а выводы относятся к совокупности всего региона (одноступенчатый подход).
В основе всех описанных методов лежит предположение, что любая совокупность характеризуется симметричным распределением ее ключевых характеристик. Говоря другими словами, каждая выборка достаточно полно характеризует всю совокупность, различные крайности в выборке уравновешивают друг друга. Но такая ситуация на практике встречается крайне редко. Скажем, исследуется рыночный потенциал определенного региона для какого-то товара. Население больших, средних и малых городов, сельской местности данного региона отличается по уровню образования, доходу, образу жизни и т.п.
В случае несимметричного распределения совокупности последняя разделяется на различные подгруппы (страты), например, по уровню доходов, и выборки формируются из этих подгрупп, по сути дела являющихся сегментами рынка. Такой метод носит название стратифицированного отбора.
Далее для каждой страты с помощью случайного отбора формируется выборка.
При применении невероятностных методов отбора формирование выборки осуществляется без использования понятий теории вероятностей, вследствие чего невозможно рассчитать вероятность включения в выборку единицы совокупности.
Кратко охарактеризуем следующие невероятностные методы отбора: отбор на основе принципа удобства, отбор на основе суждений, формирование выборки в процессе обследования и формирование выборки на основе квот.
Смысл метода отбора на основе принципа удобства заключается в том, что формирование выборки осуществляется самым удобным с позиций исследователя образом, например, с позиций минимальных затрат времени и усилий, с позиции доступности респондентов. Выбор места исследования и состава выборки производится субъективным образом, например, опрос покупателей осуществляется в магазине, ближайшем к месту жительства исследователя. Очевидно, что многие представители совокупности не принимают участия в опросе.
Формирование выборки на основе суждения основано на использовании мнения квалифицированных специалистов, экспертов относительно состава выборки. На основе такого подхода часто формируется состав фокус-группы.
Формирование выборки в процессе опроса основано на расширении числа опрашиваемых исходя из предложений респондентов, которые уже приняли участие в обследовании. Первоначально исследователь формирует выборку намного меньшую, чем требуется в проводимом исследовании, затем она по мере проведения обследования расширяется.
Формирование выборки на основе квот (квотный отбор) предполагает предварительное, исходя из целей исследования, определение численности групп респондентов, отвечающих определенным требованиям (признакам). Например, в целях исследования было принято решение, что в универсаме должно быть опрошено пятьдесят мужчин и пятьдесят женщин. Интервьюер проводит опрос, пока не выберет установленную квоту.
На практике имеет место одновременное использование нескольких методов формирования выборки.
Рассмотренные выше понятия выстраиваются в определенную логическую последовательность отдельных шагов (этапов) по разработке выборочного плана, целью которого является получение конечного варианта выборки.
Можно выделить следующие обобщенные этапы разработки выборочного плана: