Полиномиальная интерполяция
Одномерная интерполяция
Интерполяция
1 6 8
т.е. из данных предыдущего примера мы восстановили исходную передаточную функцию.
В случае кратных корней процедура несколько усложняется, но остается разрешимой.
Интерполяция является процессом вычисления (оценки) промежуточных значений функций, которые находятся между известными или заданными точками. Она имеет важное приме-нение в таких областях как теория сигналов, обработка изображений и других. MATLAB обеспечивает ряд интерполяционных методик, которые позволяют находить компромисс ме-жду точностью представления интерполируемых данных и скоростью вычислений и исполь-зуемой памятью.
Обзор функций интерполяции | |
Функции | Описание |
griddata | Двумерная интерполяция на неравномерной сетке. |
griddata3 | Трехмерная интерполяция на неравномерной сетке. |
griddatan | Многомерная интерполяция (n >= 3). |
interp1 | Одномерная табличная интерполяция. |
interp2 | Двухмерная табличная интерполяция. |
interp3 | Трехмерная табличная интерполяция. |
interpft | Одномерная интерполяция с использованием быстрого преобразования Фурье. |
interpn | Многомерная табличная интерполяция. |
pchip | Кубическая интерполяция при помощи полинома Эрмита. |
spline | Интерполяция кубическим сплайном. |
Двумя основными типами одномерной интерполяции в MATLAB-е являются полиномиаль-ная интерполяция и интерполяция на основе быстрого преобразования Фурье.
Функция interp1 осуществляет одномерную интерполяцию – важную операцию в области анализа данных и аппроксимации кривых. Эта функция использует полиномиальные методы, аппроксимируя имеющийся массив данных полиномиальными функциями и вычисляя соот-ветствующие функции на заданных (желаемых) точках. В наиболее общей форме эта функ-ция имеет вид
yi = interp1(x, y, xi, method)
где y есть вектор, содержащий значения функции; x – вектор такой же длины, содержащий те точки (значения аргумента), в которых заданы значения y; векторxi содержит те точки, в ко-торых мы хотим найти значения вектора yпутем интерполяции; method – дополнительная строка, задающая метод интерполяции. Имеются следующие возможности для выбора мето-да:
•Ступенчатая интерполяция (method = 'nearest'). Этот метод приравнивает значение функ-ции в интерполируемой точке к ее значению в ближайшей существующей точке имеющихся данных.
•Линейная интерполяция (method = 'linear'). Этот метод аппроксимирует функцию между любыми двумя существующими соседними значениями как линейную функцию, и возвр-ащает соответствующее значение для точки в xi(метод используется по умолчанию).
•Интерполяция кубическими сплайнами (method= 'spline'). Этот метод аппроксимирует ин-терполируемую функцию между любыми двумя соседними значениями при помощи куби-ческих функций, и использует сплайны для осуществления интерполяции.
•Кубическая интерполяция (method = 'pchip' или 'cubic'). Эти методы идентичны. Они ис-пользуют кусочную кубическую Эрмитову аппроксимацию и сохраняют монотонность и форму данных.
Если какой-либо из элементов вектора xi находится вне интервала, заданного вектором x, то выбранный метод интерполяции используется также и для экстраполяции. Как альтернатива,
функция yi = interp1(x, y, xi, method, extrapval)заменяет экстраполированные значения теми, которые заданы вектором extrapval. Для последнего часто используется нечисловое значение NaN.
Все методы работают на неравномерной сетке значений вектора x .
Рассмотрение скорости, требуемой памяти и гладкости методов.При выборе метода ин-терполяции всегда нужно помнить, что некоторые из них требуют большего объема памяти или выполняются быстрее, чем другие. Однако, вам может потребоваться использование лю-бого из этих методов, чтобы достичь нужной степени точности интерполяции (гладкости результатов). При этом нужно исходить из следующих критериев.
•Метод ступенчатой аппроксимации является самым быстрым, однако он дает наихудшие результаты с точки зрения гладкости.
•Линейная интерполяция использует больше памяти чем ступенчатая и требует несколько большего времени исполнения. В отличие от ступенчатой аппроксимации, результирующая функция является непрерывной, но ее наклон меняется в значениях исходной сетки (исход-ных данных).
•Кубическая интерполяция сплайнами требует наибольшего времени исполнения, хотя тре-бует меньших объемов памяти чем кубическая интерполяция. Она дает самый гладкий ре-зультат из всех других методов, однако вы можете получить неожиданные результаты, если входные данные распределены неравномерно и некоторые точки слишком близки.
•Кубическая интерполяция требует большей памяти и времени исполнения чем ступенчатая или линейная. Однако в данном случае как интерполируемые данные, так и их производные являются непрерывными.
Относительные качественные характеристики всех перечисленных методов сохраняются и в случае двух- или многомерной интерполяции.