Диагональные матрицы

Ступенчатые матрицы; сведение матрицы к ступенчатой

 

Определение 9.5: Ступенчатой называется матрица такого вида:

этого столбца (столбцов) могло и не быть

/при переходе к следующей строке «вниз» идем не более, чем на один ненулевой элемент; слева направо последующая строка может увеличиться и на несколько нулевых элементов/

Нулевая матрица, по определению, также является ступенчатой.

Справедлива следующая теорема Гаусса:

Всякая матрица эквивалентна некоторой ступенчатой матрице.

Эту теорему доказываем методом математической индукции по числу строк матрицы А:

1. n=2, т.е. ;

 

 

Не ограничивая общности, можно считать, что , ибо если , а , то меняем местами первую и вторую строки.

Из второй строки матрицы А вычтем первую, умноженную на . Получим:

— ступенчатая матрица.

2. Шаг индукции. Пусть .

Можно считать, что первый столбец матрицы А ненулевой, т.е. при некотором j. Тогда, меняя, в случае необходимости первую и j-ую строки местами, получим, что (для новой матрицы). Вычитая из j-й строки (j=2,3,...,k,k+1) первую, умноженную на , получим:

 

–– ступенчатая матрица.

Матрица, получившаяся в правом нижнем углу матрицы А, состоит из k строк, и поэтому она сводится к ступенчатой по индуктивному предположению.

Теорема Гаусса доказана.

 

Определение 9.6: Матрица называется диагональной, если все её элементы, стоящие вне главной диагонали, равны нулю.

Имеет место следующая теорема:

Всякая невырожденная матрица эквивалентна некоторой диагональной и единичной.

Теорему доказываем методом математической индукции по порядку матрицы.

1. База индукции: пусть n=2.

, т.е.

Из 1-ой строки вычитаем 2-ую, умноженную на – диагональная матрица.

2. Шаг индукции:

Заметим, что (более того, для любого j=1,2,…,k,k+1), ибо (см параграф 3 , п.3.3) . Тогда, вычитая из j-ой строки (k+1)-ю (j=1,2,…,k), умноженную на , получим, что:

(9.1)

матрица k-го порядка, которая, по индуктивному предположению, сводится к диагональной.

 

А поделив j-ю строку (j=1,2,…,k,k+1) на (как уже отмечалось ранее, для любого j), получим единичную матрицу.

Теорема доказана.