Признаки сравнения, признаки Даламбера и Коши
Определение числового ряда, остатка ряда, свойства рядов.
Лекция № 26.
Определение. Сумма членов бесконечной числовой последовательности называется числовым рядом.
При этом числа будем называть членами ряда, а un – общим членом ряда.
Определение. Суммы , n = 1, 2, … называются частными (частичными) суммамиряда.
Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …
Определение. Ряд называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.
Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.
Свойства рядов.
1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.
2) Рассмотрим два ряда и , где С – постоянное число.
Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)
3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.
Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд тоже сходится и его сумма равна S + s.
Разность двух сходящихся рядов также будет сходящимся рядом.
Сумма сходящегося и расходящегося рядов будет расходящимся рядом.
О сумме двух расходящихся рядов общего утверждения сделать нельзя.
При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.
Критерий Коши.
(необходимые и достаточные условия сходимости ряда)
Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:
.
Доказательство. (необходимость)
Пусть , тогда для любого числа найдется номер N такой, что неравенство
выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:
Необходимость доказана. Доказательство достаточности рассматривать не будем.
Сформулируем критерий Коши для ряда.
Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство
.
Однако на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:
1) Если ряд сходится, то необходимо, чтобы общий член un стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.
Пример. Исследовать сходимость ряда
Найдем - необходимый признак сходимости не выполняется, значит ряд расходится.
2) Если ряд сходится, то последовательность его частных сумм ограничена.
Однако, этот признак также не является достаточным.
Например, ряд 1-1+1-1+1-1+ … +(-1)n+1+… расходится, т.к. расходится последовательность его частных сумм в силу того, что
Однако, при этом последовательность частных сумм ограничена, т.к. при любом n.
Ряды с неотрицательными членами.
При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.
Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.
Признак сравнения рядов с неотрицательными членами.
Пусть даны два ряда и при un, vn ³ 0.
Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .
Доказательство. Обозначим через Sn и sn частные суммы рядов и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.
Пример. Исследовать на сходимость ряд
Т.к. , а гармонический ряд расходится, то расходится и ряд .
Пример. Исследовать на сходимость ряд
Т.к. , а ряд сходится ( как убывающая геометрическая прогрессия), то ряд тоже сходится.
Также используется следующий признак сходимости:
Теорема. Если и существует предел , где h – число, отличное от нуля, то ряды и ведут одинаково в смысле сходимости.
Признак Даламбера.
(Жан Лерон Даламбер (1717 – 1783) – французский математик)
Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
то ряд сходится, если же для всех достаточно больших n выполняется условие
то ряд расходится.
Предельный признак Даламбера.
Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.
Если существует предел , то при r < 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.
Пример. Определить сходимость ряда .
Вывод: ряд сходится.
Пример. Определить сходимость ряда
Вывод: ряд сходится.
Признак Коши. (радикальный признак)
Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
,
то ряд сходится, если же для всех достаточно больших n выполняется неравенство
то ряд расходится.
Следствие. Если существует предел , то при r<1 ряд сходится, а при r>1 ряд расходится.
Пример. Определить сходимость ряда .
Вывод: ряд сходится.
Пример. Определить сходимость ряда .
Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.
,
таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.
Интегральный признак Коши.
Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … = и несобственный интеграл одинаковы в смысле сходимости.
Пример. Ряд сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл сходится при a>1 и расходится a£1. Ряд называется общегармоническимрядом.
Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и то интегралы и ведут себя одинаково в смысле сходимости.