Лекция № 25.

Приложение двойных интегралов

1. Вычисление площадей в декартовых координатах.

 

y

y = j(x)

 

 

S

 

 

y = f(x)

a b x

 

Площадь S, показанная на рисунке может быть вычислена с помощью двойного интеграла по формуле:

 

Пример. Вычислить площадь фигуры, ограниченной линиями y2 = 4x + 4;

x + y – 2 = 0.

Построим графики заданных функций:

 

 

Линии пересекаются в двух точках – (0, 2) и (8, -6). Таким образом, область интегрирования ограничена по оси Ох графиками кривых от до х = 2 – у, а по оси Оу – от –6 до 2. Тогда искомая площадь равна:

S =

 

2. Вычисление центров тяжести площадей плоских фигур.

 

Координаты центра тяжести находятся по формулам:

 

здесь w – поверхностная плотность (dm = wdydx –масса элемента площади).

 

3. Вычисление объемов тел.

 

Пусть тело ограничено снизу плоскостью ху, а сверху– поверхностью z = f(x,y),

а с боков – цилиндрической поверхностью.

Такое тело называется цилиндроид.

z

 

z = f(x, y)

 

x1 y1 x2

 

x

y2

 

 

y

V =

 

 

Пример. Вычислить объем, ограниченный поверхностями: x2 + y2 = 1;

x + y + z =3 и плоскостью ХОY.

 

Пределы интегрирования: по оси ОХ:

по оси ОY: x1 = -1; x2 = 1;

 

4. Вычисление площади кривой поверхности.

 

Если поверхность задана уравнением: f(x, y, z) = 0, то площадь ее поверхности находится по формуле: