Определение повторного интеграла

Определение двойного интеграла, его свойства.

Лекция № 24.

 

Кратные интегралы.

Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

Двойные интегралы.

 

Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой

f(x, y) = 0.

 

y

 

0 x

 

 

Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью D. Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область D.

С геометрической точки зрения D - площадь фигуры, ограниченной контуром.

 

Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения наобязателен, возможно разбиение области на частичные участки произвольной формы и размера.

 

Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi .

 

В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму

где f – функция непрерывная и однозначная для всех точек области D.

Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

 

Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы имеют конечный предел, то этот предел называется двойным интеграломот функции f(x, y) по области D.

 

 

С учетом того, что Si = Dxi × Dyi получаем:

 

 

В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у.

Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:

 

Условия существования двойного интеграла.

 

Сформулируем достаточные условия существования двойного интеграла.

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, то двойной интеграл существует.

Теорема. Если функция f(x, y) ограничена в замкнутой области D и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.

 

Свойства двойного интеграла.

 

1)

 

2)

 

3) Если D = D1 + D2, то

 

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

 

 

5) Если f(x, y) ³ 0 в области D, то .

 

6) Если f1(x, y) £ f2(x, y), то .

 

7) .

Вычисление двойного интеграла.

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями х = a, x = b, (a < b), y = j(x), y = y(x), где j и y - непрерывные функции и

j £ y, тогда

 

y y = y(x)

 
 

 


D

 

y = j(x)

 

a b x

 

Пример. Вычислить интеграл , если область D ограничена линиями: y = 0, y = x2, x = 2.

y

 

D

 

0 2 x

 

 

=

=

 

Теорема. Если функция f(x, y) непрерывна в замкнутой области D, ограниченной линиями y = c, y = d (c < d), x = F(y), x = Y(y) (F(y) £ Y(y)), то

 

Пример. Вычислить интеграл , если область D ограничена линиями y = x, x = 0, y = 1, y = 2.

y

 
 


y = x

D

 

0 x

 

 

 

Пример. Вычислить интеграл , если область интегрирования D ограничена линиями х = 0, х = у2, у = 2.

=

=

 

 

Пример. Вычислить двойной интеграл , если область интегрирования ограничена линиями ху=1, у = , х = 2.

 

 

 

1.

 

2.

 

 

 

 

3.