Определение определенного интеграла, его свойства, формула Ньютона-Лейбница. Геометрический смысл определенного интеграла

Лекция № 19.

 

Определенный интеграл.

 

Пусть на отрезке [a, b] задана непрерывная функция f(x).

 

 

y

M

 

 

m

 

 

0 a xi b x

 

 

Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b]

Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.

x0 < x1 < x2 < … < xn

Тогда x1 – x0 = Dx1, x2 – x1 = Dx2, … ,xn – xn-1 = Dxn;

На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции.

 

[x0, x1] ® m1, M1; [x1, x2] ® m2, M2; … [xn-1, xn] ® mn, Mn.

 

Составим суммы:

n = m1Dx1 + m2Dx2 + … +mnDxn =

n = M1Dx1 + M2Dx2 + … + MnDxn =

Сумма называется нижней интегральной суммой, а сумма верхней интегральной суммой.

Т.к. mi £ Mi, то n £ n, а m(b – a) £ n £ n £ M(b – a)

 

Внутри каждого отрезка выберем некоторую точку e.

x0 < e1 < x1, x1 < e < x2, … , xn-1 < e < xn.

 

Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].

Sn = f(e1)Dx1 + f(e2)Dx2 + … + f(en)Dxn =

Тогда можно записать: miDxi £ f(ei)Dxi £ MiDxi

 

Следовательно,

 

Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной.

Обозначим maxDxi – наибольший отрезок разбиения, а minDxi – наименьший. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

 

Если , то

 

Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

Обозначение :

а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.

 

 

Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].

 

Также верны утверждения:

 

Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

 

 

Свойства определенного интеграла.

 

1)

2)

3)

4) Если f(x) £ j(x) на отрезке [a, b] a < b, то

 

5) Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:

 

6) Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка e такая, что

Доказательство: В соответствии со свойством 5:

т.к. функция f(x) непрерывна на отрезке [a, b], то она принимает на этом отрезке все значения от m до М. Другими словами, существует такое число eÎ [a, b], что если

и m = f(e), а a £ e £ b, тогда . Теорема доказана.

 

7) Для произвольных чисел a, b, c справедливо равенство:

Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов.

 

 

8)

 

Обобщенная теорема о среднем. Если функции f(x) и j(x) непрерывны на отрезке [a, b], и функция j(х) знакопостоянна на нем, то на этом отрезке существует точка e, такая, что

 

Вычисление определенного интеграла.

 

Пусть в интеграле нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла.

Обозначим = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х.

Аналогичную теорему можно доказать для случая переменного нижнего предела.

 

Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.

Теорема: (Теорема Ньютона – Лейбница)

Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то

это выражение известно под названием формулы Ньютона – Лейбница.

 

Доказательство: Пусть F(x) – первообразная функции f(x). Тогда в соответствии с приведенной выше теоремой, функция - первообразная функция от f(x). Но т.к. функция может иметь бесконечно много первообразных, которые будут отличаться друг от друга только на какое – то постоянное число С, то

при соответствующем выборе С это равенство справедливо для любого х, т.е. при х = а:

Тогда .

А при х = b:

Заменив переменную t на переменную х, получаем формулу Ньютона – Лейбница:

Теорема доказана.

 

Иногда применяют обозначение F(b) – F(a) = F(x).

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

 

Вычисление площадей плоских фигур.

 

 

 
 


у

 

 

+ +

 

0 a - b x

 

Известно, что определенный интеграл на отрезке представляет собой площадь криволинейной трапеции, ограниченной графиком функции f(x). Если график расположен ниже оси Ох, т.е. f(x) < 0, то площадь имеет знак “-“, если график расположен выше оси Ох, т.е. f(x) > 0, то площадь имеет знак “+”.

Для нахождения суммарной площади используется формула .

Площадь фигуры, ограниченной некоторыми линиями может быть найдена с помощью определенных интегралов, если известны уравнения этих линий.

 

Пример. Найти площадь фигуры, ограниченной линиями y = x, y = x2, x = 2.

 

 

Искомая площадь (заштрихована на рисунке) может быть найдена по формуле:

(ед2)

 

Нахождение площади криволинейного сектора.

 
 


r = f(j)

 

 

b

a

О r

Для нахождения площади криволинейного сектора введем полярную систему координат. Уравнение кривой, ограничивающей сектор в этой системе координат, имеет вид r = f(j), где r - длина радиус – вектора, соединяющего полюс с произвольной точкой кривой, а j - угол наклона этого радиус – вектора к полярной оси.

Площадь криволинейного сектора может быть найдена по формуле

 

Вычисление длины дуги кривой.

 

y y = f(x)

 

DSi Dyi

Dxi

 

 

a b x

 

Длина ломаной линии, которая соответствует дуге, может быть найдена как .

Тогда длина дуги равна .

Из геометрических соображений:

В то же время

Т.е.

Если уравнение кривой задано параметрически, то с учетом правил вычисления производной параметрически заданной функции получим

,

где х = j(t) и у = y(t).

Если задана пространственная кривая, и х = j(t), у = y(t) и z = Z(t), то

 

Если кривая задана в полярных координатах, то

, r = f(j).

 

Пример: Найти длину окружности, заданной уравнением x2 + y2 = r2.

 

1 способ.Выразим из уравнения переменную у.

Найдем производную

Тогда

Тогда S = 2pr. Получили общеизвестную формулу длины окружности.

 

2 способ. Если представить заданное уравнение в полярной системе координат, то получим: r2cos2j + r2sin2j = r2, т.е. функция r = f(j) = r, тогда

 

Вычисление объемов тел.

 

Вычисление объема тела по известным площадям его параллельных сечений.

 

Q(xi-1)

Q(xi)

 

 

a xi-1 xi b x

 

Пусть имеется тело объема V. Площадь любого поперечного сечения тела Q, известна как непрерывная функция Q = Q(x). Разобьем тело на “слои” поперечными сечениями, проходящими через точки хi разбиения отрезка [a, b]. Т.к. на каком- либо промежуточном отрезке разбиения [xi-1, xi] функция Q(x) непрерывна, то принимает на нем наибольшее и наименьшее значения. Обозначим их соответственно Mi и mi.

Если на этих наибольшем и наименьшем сечениях построить цилиндры с образующими, параллельными оси х, то объемы этих цилиндров будут соответственно равны MiDxi и miDxi здесь Dxi = xi - xi-1.

Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно и .

При стремлении к нулю шага разбиения l, эти суммы имеют общий предел:

Таким образом, объем тела может быть найден по формуле:

Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию Q(x), что весьма проблематично для сложных тел.

 

Пример: Найти объем шара радиуса R.

 

 

y

 

 

R y

 

-R 0 x R x

 

 

В поперечных сечениях шара получаются окружности переменного радиуса у. В зависимости от текущей координаты х этот радиус выражается по формуле .

Тогда функция площадей сечений имеет вид: Q(x) = .

Получаем объем шара:

.

 

Пример: Найти объем произвольной пирамиды с высотой Н и площадью основания S.

 

 
 


Q S

 

x H x

 

При пересечении пирамиды плоскостями, перпендикулярными высоте, в сечении получаем фигуры, подобные основанию. Коэффициент подобия этих фигур равен отношению x/H, где х – расстояние от плоскости сечения до вершины пирамиды.

Из геометрии известно, что отношение площадей подобных фигур равно коэффициенту подобия в квадрате, т.е.

Отсюда получаем функцию площадей сечений:

Находим объем пирамиды:

 

Объем тел вращения.

 

Рассмотрим кривую, заданную уравнением y = f(x). Предположим, что функция f(x) непрерывна на отрезке [a, b]. Если соответствующую ей криволинейную трапецию с основаниями а и b вращать вокруг оси Ох, то получим так называемое тело вращения.

 

y = f(x)

 

 

x

 

Т.к. каждое сечение тела плоскостью x = const представляет собой круг радиуса , то объем тела вращения может быть легко найден по полученной выше формуле:

 

Площадь поверхности тела вращения.

 

Мi B

 

А

 

х

xi

 

Определение: Площадью поверхности вращения кривой АВ вокруг данной оси называют предел, к которому стремятся площади поверхностей вращения ломаных, вписанных в кривую АВ, при стремлении к нулю наибольших из длин звеньев этих ломаных.

 

Разобьем дугу АВ на n частей точками M0, M1, M2, … , Mn. Координаты вершин полученной ломаной имеют координаты xi и yi. При вращении ломаной вокруг оси получим поверхность, состоящую из боковых поверхностей усеченных конусов, площадь которых равна DPi. Эта площадь может быть найдена по формуле:

Здесь DSi – длина каждой хорды.

Применяем теорему Лагранжа (см. Теорема Лагранжа.) к отношению .

Получаем:

Тогда

Площадь поверхности, описанной ломаной равна:

Эта сумма не является интегральной, но можно показать, что

Тогда - формула вычисления площади поверхности тела вращения.