Эмпирическая функция распределения
Пусть nх — число наблюдений, при которых значение признака Х меньше х. При объеме выборки, равном п, относительная частота события Х < х равна nx/n.
Определение 8. Функция
определяющая для каждого значения х относительную частоту события Х < х, называется эмпирической функцией распределения, или функцией распределения выборки.
В отличие от эмпирической функции распределения F*(x) выборки функция распределения F(x) генеральной совокупности называется теоретической функцией распределения. Различие между ними состоит в том, что функция F(x) определяет вероятность события Х < х, a F*(x) — относительную частоту этого события. Из теоретических результатов общей теории вероятностей (закон больших чисел) следует, что при больших п вероятность отличия этих функций друг от друга близка к единице:
Нетрудно видеть, что F*(x) обладает всеми свойствами F(x), что вытекает из ее определения (18.49):
1) значения F*(x) принадлежат отрезку [0, 1];
2) F*(x) является неубывающей функцией;
3) если х1 — наименьшая варианта, то F*(x) = 0 при х ≤ х1; если xk — максимальная варианта, то F*(x) = 1 приx > xk.
Сама же функция F*(x) служит для оценки теоретической функции распределения F(x) генеральной совокупности.
Пример 3. Построить эмпирическую функцию по заданному распределению выборки:
Решение. Находим объем выборки: п = 10 + 15 + 25 = 50. Наименьшая варианта равна 2, поэтому F*(x) = 0 при х ≤ 2. Значение Х < 4 (или x1 = 2) наблюдалось 10 раз, значит, F*(x) = 10/50 = 0,2 при 2 < х < 4. Значения X < 6 (а именно x1 = 2 и x2 = 4) наблюдались 10 + 15 = 25 раз, значит, при 4 < х < 6 функция F*(x) = 25/50 = 0,5. Поскольку x = 6 — максимальная варианта, то F*(x) = 1 при х > 6. Напишем формулу искомой эмпирической функции:
График этой функции показан на рис. 18.8.