Нормальное распределение
Определение 2. Общим нормальным распределением вероятностей непрерывной случайной величины Х называется распределение с плотностью
Нормальное распределение задается двумя параметрами: а и σ. Согласно определениям математического ожидания и дисперсии (формулы (18.36) и (18.38)), после выполнения соответствующих интегрирований можно вывести, что для нормального распределения справедливы формулы
Определение 3. Нормальное распределение с параметрами а = 0 и σ = 1 называется нормированным; его плотность равна
Рассмотрим функцию нормального распределения как первообразную плотности распределения вероятностей. Для случая нормированного нормального распределения (18.41) она, согласно формуле (18.34), имеет вид
Поскольку функция (18.41) является четной, то неопределенный интеграл от нее является нечетной функцией, и потому вместо функции распределения (18.42) используется функция Лапласа (см. п. 17.5)
Функции (18.41) и (18.43) табулированы (см. Приложение).
График плотности нормального распределения (18.40) для разных значений а показан на рис. 18.6.
Определение 4. Модой Мо(Х) называется возможное значение случайной величины X, при котором плотность распределения имеет максимум.
Определение 5. Медианой Ме(Х) называется такое возможное значение случайной величины X, что вертикальная прямая х = Me(X) делит пополам площадь, ограниченную кривой плотности распределения.
Нетрудно видеть, что график плотности нормального распределения симметричен относительно прямой х = а, и потому и мода и медиана в данном случае совпадают с математическим ожиданием:
Пусть случайная величина Х задана плотностью нормального распределения (18.40), тогда вероятность того, что Х примет значение на интервале (α, β), согласно формуле (18.33), равна
Преобразование этой формулы путем введения новой переменной интегрирования z = (х - а)/σ приводит к удобной вычислительной формуле:
где Ф — функция Лапласа, определенная по формуле (18.43).
Пример 3. Случайная величина распределена по нормальному закону с математическим ожиданием и средним квадратическим отклонением, соответственно равными 10 и 5. Найти вероятность того, что Х примет значение на интервале (20, 30).
Решение. Воспользуемся формулой (18.44). По условию а = 10, σ = 5, α = 20 и β = 30. Следовательно,
По табл. 2 Приложения находим соответствующие значения функции Лапласа и окончательно получаем
Пример 4. Магазин производит продажу мужских костюмов. По данным статистики, распределение по размерам является нормальным с математическим ожиданием и средним квадратическим отклонением, соответственно равными 48 и 2. Определить процент спроса на 50-й размер при условии разброса значений этой величины в интервале (49, 51).
Решение. По условию задачи а = 48, σ = 2, α = 49, β = 51. Используя формулу (18.44), получаем, что вероятность спроса на 50-й размер в заданном интервале равна
Следовательно, спрос на 50-й размер костюмов составит около 24%, и магазину нужно предусмотреть это в общем объеме закупки.